Author: Hofstee, M.A.
Paper Title Page
MO2PB04 Improving the Energy Efficiency, Reliability and Performance of AGOR 25
  • M.A. Hofstee, S. Brandenburg, H. Post, R.A. Schellekens, J.E. de Jong
    KVI, Groningen, The Netherlands
  Over the past few years the nature of the experiments performed with AGOR has changed from long experiments, to sequences of short experiments, often using different beams. In addition the total demand for beamtime has gone down. This has required a change in operating procedures and scheduling. In view of the changing demands, we are continuing our efforts to improve the energy efficiency and reliability of the cyclotron, while at the same time trying to improve performance. While some of the solutions might be unique to our facility, many will have broader applicability. Some case studies will be presented and areas for future improvements identified.  
slides icon Slides MO2PB04 [2.578 MB]  
WE3PB04 Transmission of Heavy Ion Beams in the AGOR Cyclotron 420
  • A. Sen, S. Brandenburg, M.A. Hofstee
    KVI, Groningen, The Netherlands
  • M.J. van Goethem
    UMCG, Groningen, The Netherlands
  During the acceleration of intense low energy heavy ion beams in the AGOR cyclotron feedback between beam intensity and pressure, driven by beam loss induced desorption, is observed. This feedback limits the attainable beam intensity. Calculations and measurements of the pressure dependent transmission for various beam agree reasonably well. Calculation of the trajectories of ions after a charge change shows that the desorption is mainly due to ions with near extraction energies, hitting the outer wall at a shallow angle of incidence. For heavy ions like 206Pb27+ several charge exchanges are needed before the orbit becomes unstable. Our calculations indicate that these ions make thousands of turns before finally hitting the wall. They therefore are a large fraction of the circulating ions and may contribute to vacuum degradation through restgas ionization. Ion induced desorption for relevant ions and materials has been measured; it explains the observations in the cyclotron semi-quantitatively.
This work has been financially supported by the Foundation FOM, the Dutch funding agency NWO and the EU-FP7, Grant Agreement n° 262010 - ENSAR.
slides icon Slides WE3PB04 [5.272 MB]