Author: Brugger, M.
Paper Title Page
MOPPT030 Past, Present and Future Activities for Radiation Effects Testing at JULIC/COSY 88
 
  • S.K. Hoeffgen, S. Metzger
    FhG, Euskirchen, Germany
  • R. Brings, O. Felden, R. Gebel, R. Maier, D. Prasuhn
    FZJ, Jülich, Germany
  • M. Brugger, R. Garcia Alia
    CERN, Geneva, Switzerland
 
  The testing of radiation effects (displacement damage DD, single event effects SEE) with energetic protons for electronics used in space and accelerators is of growing importance. Setup and past experience of a dedicated test stand used by Fraunhofer INT at the JULIC cyclotron will be presented. For general DD testing and for testing SEE of the trapped protons in space, the energy of 35 MeV of the JULIC Cyclotron is usually sufficient. During solar proton events, as well as at high energy accelerators (CERN, FAIR), electronics are confronted with protons of much higher energy. Recent scientific studies have shown that for single event upsets* as well as destructive failures (e.g, single event latch-ups)** a cross section measured at energies in the tens oF one/two-hundred MeV range (e.g. PIF@PSI) can significantly underestimate the failure rate. To avoid unnecessary high safety margins there is a growing need for the opportunity to test electronics at several GeV, like the beam provided by the Cooler-Synchrotron COSY in Jülich.
*R. Garcia Alia et. al., accepted for publication, IEEE TNS (2013), DOI:10.1109/TNS.2013.2249096
**J. R. Schwank et al., IEEE TNS, vol. 52, pp2622 (2005)