Cooling Activities at the TSR Storage Ring Manfred Grieser

Max-Planck-Institut für Kernphysik

COOL'13, Mürren 10-14 June 2013

The TSR Storage Ring

 \Rightarrow investigation of short bunch creation at the TSR

Bunch length compression with electron cooling

Measured bunch profile with electron cooling

measured bunch profile 1.0 fit beam 0.8 parabola I (rel. units) 0.6 profile 0.4 0.2 W 0.0~ -20-400 20 40 t (ns) bunch length as a function of resonator voltage I=20 µA

measurement with capacitive pick up

for $R \rightarrow \infty$: $U \sim I$

bunch length as a function of intensity U=795 V

Space charge limitation of bunch length

effective acceleration voltage: synchronous $U_{eff}(\Delta \phi) = U \cdot \sin(\Delta \phi + \phi_s) + U_s(\Delta \phi)$ with $U_s(\Delta \phi) = E_s(\Delta \phi) \cdot C_0$ C_0 - circumference

beam width at space charge limit

space charge limit
at
$$\eta = \frac{\Delta f / f}{\Delta p / p} > 0$$
 $U_{eff}(\Delta \phi) = 0 \implies w = C_0 \frac{\sqrt[3]{3(1 + 2\ln(\frac{R}{r}))I}}{\sqrt[3]{2^4 \pi^2 c^4 \epsilon_0 \gamma^2 h^2 \beta^4 U}}$
 $\phi_s = 0^0$ parabola profile

parabola profile: only distribution to compensate the synchrotron motion of each ion

Space charge limitation comparison theory and measurements

space charge limit: parabola profile

w = C₀
$$\frac{\sqrt[3]{3(1+2\ln(\frac{R}{r}))I}}{\sqrt[3]{2^4 \pi^2 c^4 \epsilon_0 \gamma^2 h^2 \beta^4 U}}$$

I – intensity, U - resonator voltage

bunch length as a function of intensity I U=795 V

Operation of the storage ring at η **<0 ring**

at $\eta = \frac{\Delta f / f}{\Delta p / p} < 0$ space charge voltage $U_s(\Delta \phi)$ doesn't compensate resonator voltage U· $sin(\Delta \phi + \pi)$, no space charge limit at $\eta < 0$!!!!

 $\Rightarrow operation of the storage ring at \eta < 0$ to achieve smaller bunch length

The slip factor η of a storage ring

To get the η parameter negative the **orbit length of ions with positive momentum deviation has to increased** by increasing the dispersion $D_x(s)$ inside the dipole magnets

The slip factor of the TSR at negative η

Electron cooled bunches at negative and positive η

slip factor: $\eta = \frac{\Delta f / f}{\Delta p / p}$

beam: ¹²C⁶⁺ E=50 MeV

bunch length measured at η =-0.59

bunch length measured at standard mode $\eta = 0.91$

comparison: corresponding Gaussian bunch length σ^* with same half width as parabola distribution: $\sigma^* = \frac{W}{2\sqrt{\ln(2)}} = 0.6 \cdot W$

Measured bunch length at η =-0.59

Comparison of measured bunch length at η =-0.59 and at the TSR standard-mode (η =0.91)

$U_0[V]$	$I_0[\mu A]$	$\sigma_{\eta < 0}$ [ns]	σ^* [ns]	$\frac{\sigma^*}{\sigma_{\eta<0}}$	
51	5.8	4.73	16.39	3.47	
102	4.4	3.87	11.97	3.09	
204	3.6	3.71	8.95	2.41	
409	3.7	3.47	7.18	2.07	
651	2.9	3.03	5,71	1.88	
	$\eta=-0.59$ corresponding bunch length at $\eta=.91$ with same half width				

 $\Rightarrow shorter bunch length (\underline{factor \approx 2-3.5}) are archived at \eta<0 for the same U an I compared to the standard mode with \eta>0$

 $\sigma^* = 0.6 \cdot w$

Self Bunching at $\eta < 0$

pick-up voltage

pick-up voltage

with beam, without rf U0=0, ECOOL on

without beam, without rf, ECOOL on

Deceleration of ion beams

demand of highly charged ions at low velocities for experiments with a reaction microscope

Example: deceleration of ${}^{12}C^{6+}$ ions: energy: 73.3 MeV \rightarrow 9.7 MeV B·p: 0.71 Tm \rightarrow 0.26 Tm

beam rigidity as a function of time

declaration cycle:

increase of bunch length and beam size

- \Rightarrow two electron cooling steps:
- 1. after injection before ramping
- 2. at the final energy to provide good beam quality for the experiment

almost linear decrease of beam rigidity and beam velocity

Horizontal beam σ_x beam width during deceleration

Beam width during deceleration

beam with due to IBS at a constant velocity: $\frac{1}{\sigma_i} \frac{d\sigma_i}{dt} = \frac{1}{\beta^{\kappa}} \frac{D_i}{\sigma_i^{\gamma}}$

in the deceleration process: $\beta(t) = \beta_0 + \alpha \cdot t$ β_0 initial velocity

 \Rightarrow beam width during deceleration:

 $\widetilde{D}_{i} \sim \frac{q^{4}}{A^{2}} \frac{N}{h}$ determined at initial energy for particle number N

Acknowledgement

Sayyora Artikova-PhD work: Low-energy ions in the heavy ion cooler storage ring TSR
 Robin Bastert-diploma work: The creation of short ion pulses in a storage ring
 Klaus Blaum

Andreas Wolf