COOL'13 Mürren, Switzerland, June 10-15 2013

Influence of electron energy detuning on the lifetime and stability of ion beam in CSRm

Institute of Modern Physics,CAS Lanzhou

Xiaodong Yang

yangxd@impcas.ac.cn

Ion-Beam Heating Effect Observed at IMP

Proposed by V. Parkhomchuk

Dear colleagues,

I want to very interesting results that was obtained at IMP (China) with interaction detune (energy) electron beam with ion beam. There is questions of "electron heating". Common position (Dag Reistad) was that with increasing different velocity electron beam - ion beam heating effect should decreased. But experiments of our China colleagues show that after change different electron energy more than 400 V development very strong instability. I think it is interesting to have special invited report from IMP about this subject.

Vasily Parkhomchuk

Previous Results

- Background---reported in RuPAC2012
- First attempt (feasible, simple, convenient)
- Previous results
- Not clear
- Chinese Physics C Vol.37 No.1,2013

RuPAC-2012 St. Petersburg, Sept. 24-28 2012

Beam Instability Phenomena Observed at HIRFL-CSR in the Presence of Electron Cooling

Institute of Modern Physics,CAS Lanzhou

Xiaodong Yang

yangxd@impcas.ac.cn

The proton beam disappeared after turn on the electron cooler and electron beam. There was no obvious cooling and accumulation.

The lifetime of H⁺₂ is very short comparing with the results from TSR and CELSIUS.

Electron heating?

Motivation

- Increase the accumulated ion intensity
- Suppression of ion beam instability

Electron heating Features

- Bunched beam
- Lifetime becomes shorter
- Exposed to the electron beam

Possible reasons

Nonlinear electrical fields from the electron beam

Cure method proposed

- Increase the electron beam diameter
- Modulation of electron beam energy

Main works in CSR

- Experiments on cancer therapy (15% of beamtime)
- Cancer therapy (5% of beamtime) (Total / 91patients(from 2009), Last year / 18patients)
- Mass measurement (next step:SMS)
 (high provision Schottly, Mass Spectrosed
- (high-precision Schottky Mass Spectroscopy)
- Recombination Experiments (5% of beamtime)

Contents

Experimentally investigated the influence of electron energy modulation on the maximum accumulated intensity, lifetime and stability of ion beam in the case of artificially increased the energy spread of electron beam with the help of the detuning system of CSRm cooler.

CSRm, 3.7MeV/u,¹¹²Sn²⁶⁺---¹¹²Sn³⁵⁺

- Smaller cyclotron SFC
- 33mg/cm² Carbon foil before injection
- Coasting beam
- Momentum spread change
- Emittance growth
- Energy loss
- Displacement between electron and ion beam

Beam Acceptance: CSRm $A_h=200 \pi$ mm-mrad ($\Delta P/P=\pm 0.15\%$) $A_v=30 \pi$ mm-mrad $\Delta P/P=1.25\%$ ($\epsilon_h=50 \pi$ mm-mrad)

Betatron function at cooling section of CSRm: βx=10.0m, βy=16.7m, Dx=0

Electron Energy modulation amplitude: 0.01%~~~0.12%

Modulation

Parameters during the experiments

Relative amplitude of modulation	Amplitude of pulse (V)	Positive Pulse Width(ms)	Negative pulse width(ms)	Interval of pulse(ms)	Repetition
(0~2.5)/2.096kV 0.01%~~~0.12%	0,0.2,0.4,0.6, 0.8,1.0,1.5, 2.0,2.5	10	10	200	4.76Hz
(0~2.5)/2.096kV 0.01%~~~0.12%	0,0.2,0.4,0.6, 0.8,1.0,1.5, 2.0,2.5	10	10	100	9Hz
(0~2.5)/2.096kV 0.01%~~~0.12%	0,0.2,0.4,0.6, 0.8,1.0,1.5, 2.0,2.5	10	10	150	6.25Hz
(0~2.5)/2.096kV 0.01%~~~0.12%	0,0.2,0.4,0.6, 0.8,1.0,1.5, 2.0,2.5	20	20	150	5.88Hz
(0~2.5)/2.096kV 0.01%~~~0.12%	0,0.2,0.4,0.6, 0.8,1.0,1.5, 2.0,2.5	50	50	150	5Hz

Ion revolution frequency=0.1656MHz, tune Qx=3.63, Qy=2.61

Experiments contents

- 9 steps 0, 0.2V, 0.4V, 0.6V, 0.8V, 1.0V, 1.5V, 2.0V, 2.5V(0.01%~~0.12%)
- 3 pulse width (10ms, 20ms, 50ms)
- 3 pulse interval(100ms, 150ms, 200ms)

Lifetime and accumulated ion intensity under the different modulation

The voltage amplitude of modulation was not sensitive to the lifetime of ion beam.

The voltage amplitude of modulation was not sensitive to the lifetime of ion beam.

detuning mode

Due to the ion beam intensity gradually became smaller from the injection during the experiments, the accumulated ion intensity became smaller too.

The voltage amplitude of modulation was not sensitive to the accumulated ion intensity.

Some Schottky signals observed in the experiments

2.5V-10ms-10ms-200ms

0V-50ms-50ms-150ms

2.5V-10ms-10ms-200ms

0V-50ms-50ms-150ms

DCCT signal

Schottky signal

DCCT signal represents the ion intensity Schottky signal represent the ion velocity or momentum spread, The revolution frequency. Two signals changed at the same time?

Without modulation 0.2V-10ms-10ms-200ms 0.4V-10ms-10ms-200ms 0.6V-10ms-10ms-200m

The evolution of Schottky signal with the modulation amplitude 10ms-200ms-10ms-200ms

Without modulation 0V-50ms-50ms-150ms 0.6V-50ms-50ms-150ms 1.0V-50ms-50ms-150ms After 2.5V-20ms-20ms-150ms

The evolution of Schottky signal with the modulation amplitude 50ms-150ms-50ms-150ms The amplitude of change was bigger than previous slide One frequency side was more serious than the other!

1-37-40-42

Time

Without modulation

0V-10ms-10ms-100ms After 2.5V-10ms-10ms-200ms 0.6V-10ms-10ms-100ms

Compare between different modulation amplitude,

The modulation was symmetrical.

It seems symmetrical in the Schottky signal in this modulation.

Without modulation

0.6V-10ms-10ms-150ms

2.5V-10ms-10ms-150ms

Compare between different modulation amplitude, The modulation was symmetrical.

One frequency side was more serious than the other!

1-22-27

0.8V-20ms-20ms-150ms

1.5V-20ms-20ms-150ms

The Schottky signal was splited into two parts in some modulation The amplitude of modulation was smaller than 2.5V, 0.12%.

The beam loss was not obvious from the DCCT signals

Other Effects

 When the modulation voltage was set as zero and turn off, the modulation effect still appear in the next Schottky signal. The response seems a bit "hysteresis effect" or "Memory effect ".

0V-10ms-10ms-200ms

0V-20ms-20ms-150ms

0V-10ms-10ms-100ms **0V**-10ms-10ms-150ms

The voltage amplitude of modulation pulse were zero

1-10-19-28

2.5V-10ms-10ms-200ms

2.5V-10ms-10ms-150ms

2.5V-10ms-10ms-100ms

2.5V-20ms-20ms-150ms

The voltage amplitude of modulation pulse were 2.5V

9-18-27-36

2.5V-10ms-10ms-200ms

0V-10ms-10ms-100ms

Previous Schottky signal

2.5V-20ms-20ms-150ms

0V-50ms-50ms-150ms

Previous Schottky signal

Shortage of this experiment

- Only two signals (DCCT, Schottky probe)
- No information of transverse profile of ion beam
- No enough information from BPM monitors

Width and repetition Frequency of modulation

- Compare with:
- Revolution frequency
- Betatron oscillation frequency
- Compare with:
- Cooling time
- Injection interval
- Lifetime of ion beam

Electron energy modulation

 The essential of electron energy modulation is augmentation the longitudinal temperature of electron beam.

Gain from this experiment

- Helpful to understand the effects of electron energy instability on the Schottky signal
- Helpful to understand the unexpected negative effects of electron energy modulation.
- Compare with the "electron heating" in the case of bunched proton beam

Summary

 In the condition of this experiments, due to limitation of injected ion beam and its intensity, the accumulated ion beam have not approached the saturation in the storage ring, the space charge limitation have not reached, at the same time, not find the proper modulation frequency and appropriate amplitude, No obvious evidence for increasing the accumulated ion intensity and suppression of instability by electron energy modulation.

Thank You !

www.impcas.ac.cn