

Progress of the stochastic cooling system of the Collector Ring

C. Dimopoulou, D.Barker, R.Böhm, O.Dolinskyy, B.Franzke, R.Hettrich, W.Maier, R.Menges, F.Nolden, C.Peschke, P.Petri, M.Steck, L.Thorndahl

COOL'13, Mürren, Switzerland

0.0664

FAIR

Required performance of the CR stochastic cooling

- Short bunch of hot secondary beam (pbars/rare isotopes) from production target into the CR
- After bunch rotation & adiabatic debunching, the δp/p of the coasting beam is low enough for stochastic cooling of all particles
- Fast 3D stochastic cooling necessary for maximum production rate of secondary beams
- The CR provides the HESR (i) with pre-cooled pbars for accumulation as planned in the first FAIR phase and (ii) with (pre-cooled) stable ions/rare isotopes for in-ring experiments

	Antiprotons 3 GeV, 10 ⁸ ions		Rare isotopes/stable heavy ions 740 MeV/u, cooling of 10⁸ ions (max. 10 ⁹ ions in ring)	
	δp/p (rms)	$\epsilon_{h,v}$ (rms) [π mm mrad]	δp/p (rms)	$\epsilon_{h,v}$ (rms) [π mm mrad]
Before/after cooling	0.35 % / 0.05 %	45 / 1.25	0.2 % / 0.025 %	45 / 0.125
Phase space reduction	9x10 ³		1x10 ⁶	
Cooling down/cycle time	$\leq 9 \text{ s} / 10 \text{ s}$		≤ 1 s / 1.5 s	

Challenges and design criteria

Main issue for antiprotons: increase ratio

Schottky signal ($\propto Q^2$)

thermal noise

Main issue for rare isostopes: undesired mixing (from PU to K)

- Pick-up electrodes cooled at 20-30K
- Plungeable pick-up electrodes i.e. moving closer to the beam during cooling
- Notch filter momentum cooling for noise suppression around revolution harmonics

- Pre-cooling (1st stage) with Palmer method
- Cooling (2nd stage) with the notch filter

flexible BeCu

sheet at 30 K

Motor

drive

unit 💿

Prototype PU tank at GSI

Electrode

double-module

technical challenge cryoshield: made of oxygen-free copper, gilded galvanically to reach very low thermal emissivity (expected < 2% from measurements performed on speciments in our lab)

cryoshield at 80 K

Preparation of mounting pieces and test-assembly of the Cu-cryoshield in the prototype pick-up tank July 2013: gilding of the cryoshield by contractor

CR Stochastic Cooling System 1-2 GHz

3D stochastic cooling of coasting secondary beams (antiprotons @ v = 0.97c, rare isotopes @ v = 0.83c) Beam revolution frequency (period)~ 1 MHz (1 μ s)

System bandwidth = 1-2 GHz

Kicker VL

Kicker HL 3D cooling branches and their purpose

Pick-ups HL, VL→ Kickers HL, VL notch filter longitudinal cooling method

- antiproton cooling;
- rare isotopes final-stage cooling;
- stable ions cooling.

Palmer pick-up \rightarrow Kickers KHL, KVL Palmer 3D cooling method

rare isotopes 1st-stage cooling (pre-cooling)

Slotline electrodes for PUs (HL/VL)

Durchkontaktierung gefräst Gold

Durchkontaktierung 3 3,5 mm Gold Durchkontaktierung 3 2.6 mm Gold

Durchkontaktierung ø 1,0 mm Silber

Basismaterial Al₂O₈ 1,905 mm Unterseite Gold Unterseite Silber

Oberseite Silber

End 2012: first electrode ceramic plates delivered; metallisation pending

 \rightarrow Poster WEPPO20

milled module body

boards

with combinet

- UHV-compatible
- broadband within 1-2 GHz

- high coupling impedance to the beam
- mechanically robust for plunging

Challenging PU vacuum tanks

robust, programmable, water-cooled linear motor drive units for synchronous movement of the electrode double-modules

electrode modules sliding along flexible BeCu sheets cooled by cryoheads at 20-30 K

intermediate cryoshield at 80 K

Cryo-cooling reduces considerably the thermal noise originating from the pick-up structures. Examples: CERN AC, FNAL

Plunging is a very effective way to increase the transverse sensitivity (AC, AD) and can be used together with cryo-cooling (but its a mechanical challenge)

F. Caspers: Design Aspects for Stochastic Cooling.System Components Hirschegg Workshop Feb2002

Prototype PU tank at GSI

2 m long vacuum tank

Prototype PU tank at GSI

2 new linear motor drive units (designed & manufactured in 2012)

2013: re-assembly in the tank & synchronous tests at room temperature planned

Design of the Palmer pick-up for pre-cooling of RIBs

Rare isotopes have high Q, hence offer strong signal. Faltin electrodes have flat frequency response but are large and insensitive. Faltin pick-ups are suitable for pre-cooling of RIBs. Plunging is not necessary.

Palmer cooling signal combination for vertical and simultaneous horizontal and longtitudinal cooling.

→ Poster WEPPO21

Design of the Palmer pick-up for pre-cooling of RIBs

The Faltin rail is divided into cells and simulated with the HFSS code.

The structure is optimised in the band 1-2 GHz

- for maximum PU and kicker impedance
- small and flat output signal phase w.r.t. the particle pulse

• The transmission coefficient S_{21} is also calculated at each frequency to ensure thereare minimal reflections.

RF Block diagram of the complete system

- 2012: First layout of HF signal processing components for all cooling branches typically, small series of HF components with stringent requirements for amplitude flatness & phase linearity in the band 1-2 GHz
- Ongoing refinements in interplay with lattice/building and physics requirements
- Example: specification of the dynamic range for the medium power level amplifiers to cover all foreseen operation modes with beam
 → Poster WEPPO20

Example: PU tank signal processing

at room temperature (290 K): procurement in 2017

Notch filter with optical delay line

Notch filter (Thorndahl's method): pushes particles towards the correct revolution frequency

Machine Beamtime 2012

4x10⁶ Au⁷⁹⁺ ions @ 400 MeV/u

< -24 dB deep notches within 1-2 GHz !

Power amplifiers at the kickers

→ 8 kW installed microwave cw power (32 power amplifiers, 250 W each)

> Large cost factor for the SC system

beam

coupler signal from other side

IS₃₁+1dB S21

S₂₁-1dB

S₂₄-5dB

 $\varphi_0 + 60^\circ$

 $\varphi_0 + 10^\circ$

φ₀-10

φ₀-60

0.5

ρ(S₂₁)

S₂₁

Simulations of cooling of antiprotons

Longitudinal cooling of 10^8 antiprotons with notch filter in band 1 - 2 GHz

using the CERN code cross-checked with

T. Katayama/H.Stockhorst

main goal: 10 s cycle time

t=0, 2.5, 5, 7.5 and 10 s

g=150 dB; t=10 s

Simulations of cooling of heavy ions

Longitudinal cooling (notch filter/TOF) of *stable* ions with the pickups HL/VL

- RIB lattice CR68: η=0.176 ; η_{pk}=0.128; x=0.369 (PU-K/circumference)
- response of the designed slotline electrodes; no plunging assumed.

Reference ions (coasting beam) @ 740 MeV/u: U^{92+} and ion with Q=50 Initial rms momentum spread $\delta p/p$:

- within notch filter/TOF acceptance
- small so as to avoid band overlap (not in the FP)

Simulations of cooling of heavy ions

Longitudinal cooling of $10^8 U^{92+}$ ions with notch filter in band 1 - 2 GHz

using the CERN code, preliminary

→ Talk TUAM1HA04

Particle noise scales with Q^2 , thermal noise negligible \rightarrow same results for ions with $Q=50^+$ and +6 dB more gain

But, main goal: 1.5 s cycle time for hot rare isotopes (Palmer pre-cooling followed by notch filter cooling)

Simulations of cooling of heavy ions

Cooling simulations in the time domain

(f-m*fo)/fo, m~1400 (midband)

Agreement within a few %, also for notch filter cooling!

Cooling simulations in the time domain

Next goals

- Procurement contract for the power amplifiers
- Prototype pick-up tank:

 Intensive tests of the challenging mechanical concepts at room temperature
 First cryogenic test with cryoheads, cryoshield and movable electrode dummies
 Commissioning of the testing chamber for linear motor drive units
- Ongoing specification and in-house developments/production of the Palmer pick-up, the notch filters and other HF components
- testing of new operation programs at the ESR stochastic cooling system
- simulations of the system performance have to proceed at low priority and mainly with support from external experts

Thank you for your attention!