Broadband lasercooling of relativistic C³⁺ ions at the ESR

Danyal Winters¹, Colin Clark¹, Christina Dimopoulou¹, Tino Giacomini¹, Christophor Kozhuharov¹, Thomas Kühl^{1,2,3}, Yuri Litvinov¹, Matthias Lochmann^{1,2}, Wilfried Nörtershäuser^{1,2,4}, Fritz Nolden¹, Rodolfo Sanchez^{1,2}, Shahab Sanjari¹, Markus Steck¹, Thomas Stöhlker^{1,3,5}, Johannes Ullmann¹,

Tobias Beck⁴, Gerhard Birkl⁴, Benjamin Rein⁴, Sascha Tichelmann⁴, Thomas Walther⁴,

Xinwen Ma⁶, Weiqiang Wen⁶, Jie Yang⁶, Dacheng Zhang⁶,

Ulrich Schramm⁷, Michael Seltmann⁷, Mathias Siebold⁷, Michael Bussmann⁷

¹GSI Darmstadt, ²Uni Mainz, ³HI Jena, ⁴TU Darmstadt, ⁵Uni Jena ⁶IMP CAS Lanzhou, China, ⁷HZDR Dresden

The principle: laser cooling of stored relativistic ions

In our case, the cooling laser force is counteracted by the restoring force of the `*bucket*´ when **the ion beam is bunched**.

Laser cooling of Li-like ions at the SIS100/300

The transition wavelengths strongly depend on the atomic number Z!

The Doppler boost of the SIS300 shifts wavelengths to `normal' lasers!

U. Schramm, M. Bussmann et al.

Laser cooling specifications

	PALLAS	TSR	ESR	SIS 300
Ion species	²⁴ Mg ⁺	⁹ Be ⁺	$^{12}C^{3+}$	²³⁸ U ⁸⁹⁺
Circumference (m)	0.36	55	108	1080
η_{cooling} (%)	1	8	8	3
Periodicity	900	2 (4)	2	~ 60
Tune	~ 60	2.8	2.3	~ 15
$\gamma (\gamma_{\rm max})$	1	1.001	1.13	30 ^b (35)
β	$\sim 10^{-5}$	0.041	0.47	0.9994
$\hbar\omega_{\rm in}~({\rm eV})$	4.4	4.0 ^a	4.8	4.8 (4.0)
$\hbar\omega_0 (eV)$	4.4	3.8	7.9*	280
$\hbar\omega_{\rm out}(\Theta=0^\circ)~({\rm eV})$	4.4		13.3	19 600
Lifetime τ_0 [ns]	3.7	8.3	3.8*	0.06
$I_{\text{sat.0}} (W/\text{cm}^2)$	0.76	0.4	1.3	4×10^{6}
S	1-15	1-10	<10	< 0.005
Cooling force $F_{\text{max,out}}$ (eV/m)	2.0	0.76	15	160 ^c
$\tau'_{\text{cooling out}}[s]$		0.001	0.002	1
$\tau_{\rm cooling,out}$ [s]		0.01-0.1	0.02-0.2	10-100
Relative width (Γ_0/ω_0) [10 ⁻⁸]	4	2	2	4
$\Delta p/p$ from $\Gamma_0/\omega_0 [10^{-7}]$		5	0.4	0.4
$T_{\text{Doppler.out}} = \hbar \Gamma_{\text{out}} / (2k) \text{ (K)}$	0.001	0.0005	0.001	1.9
E_{Coulomb} (10 µm) (K)			15	13 000
$\Delta v/v$ (N = 10 ⁸ , equilibrium)			ecool: $< 10^{-5}$	<u> 20 - 20</u>
			laser: $< 10^{-6}$	$\approx 5 \times 10^{-5}$

Results of previous beamtimes

Laser cooling of C³⁺ at 122 MeV/u in the ESR in 2004 and 2006

2004: "simple" laser system for first tests on the 2s \rightarrow 2p transition @ ~155 nm

2006: scanning laser system to improve the cooling scheme

measurement of $2S_{1/2} \rightarrow 2P_{1/2 \& 3/2}$

	Uncertainty in absolute ion energy		
Schramm, Bussmann et al.	• (2S $_{1/2} \rightarrow$ 2P $_{1/2}$) [mm]	● (2S _{1/2} – 2P _{3/2}) [nm]	
ESR C ³⁺ experiment	155.0705 (<mark>39</mark>) (3)	154.8127 (39) (2)	
Theory (I. Tupitsyn, V. Shabaev)	155.0739 (26)	154.8173 (53)	

Experiment motivation

- Laser cooling is a great cooling method for heavy ions with relativistic velocities
- Precision spectroscopy of Li-like ions (Na-like)
- Laser cooling without pre-electron cooling
- Fluorescence detection with PMT and Channeltron
- All-optical detection of the momentum spread $(\Delta p/p < 10^{-7})$ of the ion beam
- Study ordering of the ions in the beam at very low momentum spread

Limitations of previous beamtimes (2004 and 2006)

- initial electron cooling was required
- laser force \rightarrow small momentum spread
- bucket frequency was scanned, not the laser
- Schottky detection is limited in sensitivity
- fluorescence photons are difficult to detect

What's new?

- fast scanning CW diode laser (TU Darmstadt)
- Schottky resonator
- ionization profile monitor
- fluorescence detection system with UV PMT and UV channeltron (in vacuo)
- data acquisition and control system

The experimental storage ring at GSI

Experiment improvements

lon species: ¹²C³⁺

$$\begin{split} \textbf{E}_{kin} &= 122 \; \textbf{MeV/u} \\ &= 1.47 \; \textbf{GeV} \\ (\; \beta = 0.47, \, \gamma = 1.13 \;) \\ \textbf{f}_{rev} &= 1.295 \; \textbf{MHz} \\ \tau_{beam} \sim 400 \; \textbf{s} \end{split}$$

 $\lambda_{\text{laser}} = 257 \text{ nm}$

 $\begin{array}{l} 2S_{1/2} \rightarrow 2P_{1/2} \\ \lambda_{rest} = 155 \ nm \\ \tau_{rest} = 3.8 \ ns \end{array}$

In-vacuo UV-sensitive (Csl coated) channeltron

→ BMBF Funding: Gerhard Birkl (TU Darmstadt)

ECDL scanning cw laser system (20 GHz IR, 3 GHz needed)

→BMBF funding: Thomas Walther, Tobias Beck (TU Darmstadt)

Laser beam transport and stabilization

Wilfried Nörtershäuser, Johannes Ullmann (TU Darmstadt)

Preliminary Results

Two ion species stored: ¹²C³⁺ (88%) & ¹⁶O⁴⁺ (12%)

Electron cooling on Bunching off

Frequency [MHz] →

The laser scans over the whole bucket acceptance

Bunching off

Very preliminary experimental results:

Electron cooling on Bunching on Frequency [MHz] \rightarrow

Two laser cooling scenarios

fix laser frequency scan bunching frequency

scan laser frequency fix bunching frequency

2004 / 2006 ESR beamtime

2012 ESR beamtime

Fluorescence from the ions detected by the channeltron

Conclusions and outlook

At the ESR laser cooling using two scenarios was demonstrated

- 1) fixed laser freq. & scanning bunching freq.
- 2) scanning laser freq. & fixed bunching freq.
- 3) fixed cw laser + pulsed laser (broadband)

& fixed bunching freq.

Fluorescence was measured by (in vacuo) channeltron we are looking into other promising systems for the future

We have demonstrated laser cooling with just the scanning laser, also without initial electron cooling

new pulsed laser system is being designed (TUDa / HZDR)

Experiments at the CSRe in Lanzhou are being prepared Test beamtime in 2013 seems feasible, experiment in 2014?

Preparations for laser cooling at FAIR (HESR, SIS100/300) First beam from SIS100 might be in 2019.

In 2012 we took a lot of data which is currently being analyzed.

