

LEIR Operations for the LHC and Future Plans

Django Manglunki for the LEIR Team

with help from

M.E. Angoletta, M. Bodendorfer, C. Carli, A. Findlay, S. Pasinelli, J.Tan & G. Tranquille.

- First Pb-Pb (2010-2011)
- then p-Pb (2013)
- then other ion species (not yet approved)
- At 7ZTev, Pb-Pb nominal $\mathcal{L} = 10^{27} \text{ cm}^{-2} \text{s}^{-1}$

The Ion Injection Chain

The Low Energy Ion Ring

- Accumulates ions for LHC bunches
- Keeps their H, V and // emittances small
- Brings Linac3 ion beam to PS injection energy range

- 3 plane stacking
- Cooling
- Acceleration

Electron Cooling section ER.SS20

A few parameters

- Energy = 4.2 72 MeV/u
- $B\rho = 1.12 4.8 \text{ Tm}$
- f_{REV} = 0.361 1.423 MHz
- $(Q_H, Q_V) = (1.82, 2.72)$
- Operated below transition (γ_t≈2.87)
- D=0 at cooler, ejection & RF
- D=10m at injection 10 m
- $\beta_{H,V} = 5m$ in cooler
- $\beta_{H,V} = 4m$ at injection
- Acceptances H/V 60/40 µm
- Momentum acceptance $\pm 4x10^{-3}$

3-plane stacking injection scheme

- Multiturn injection of the 200μ s linac pulse, with additional stacking in the vertical phase space:
- inclined electrostatic injection septum
- horizontal orbit bump
- momentum ramping cavity in injection line
- constraints on working point (0.1 from coupling diagonal)
- up to 200ms repetition rate

Efficiency on paper ≈70% for ≈70 turns injected (over 50% achieved) LEIR OPERATIONS FOR THE LHC AND FUTURE PLANS

LEIR's Electron Cooler

- Cools down the newly injected beam, then drags it to the stack
- High perveance
- 300 mA operating electron current (up to 600mA)
- See G.Tranquille's poster WEPPO15 "Performance Update of the LEIR Electron Cooler"

The LHC Ion Injector chain: the (initial) Nominal Scheme

 $\beta^* = 0.5 \text{ m} \rightarrow \text{L} = 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$ LEIR OPERATIONS FOR THE LHC AND FUTURE PLANS

	ECR Source	Linac 3	LEIR	PS	SPS	LHC
Output energy	2.5 KeV/u	4.2 MeV/u	72.2 MeV/u	5.9 GeV/u	177 GeV/u	2.76 TeV/u
²⁰⁸ Pb charge state	29+	29+ →54+	54+	54+ →82+	82+	82+
Output Bρ [Tm]		2.12 →1.14	4.80	86.7 →57.3	1500	23350
bunches/ring			2 (1/8 of PS)	4	52	592
ions/pulse	9 10 ⁹	1.15 10 ⁹	9 10 ⁸	4.8 10 ⁸	4 .7 10 ⁹	4.1 10 ¹⁰
ions/LHC bunch	1.1 10 ^{10.}	1.45 10 ⁹	2.25 10 ⁸	1.2 108	9 107	7 107
bunch spacing [ns]				100	100	100
ε *(norm. rms) [μm]	0.07	0.25	0.7	1.0	1.2	1.5
ε (phys., rms) [μm]	30	2.6	1.75	0.14	0.0063	0.0005
Repetition time [s]	0.2-0.4	0.2-0.4	3.6	3.6	~50	~10'fill/ring

Initial plan for Nominal luminosity

- "Nominal beam" in Design Report
 - $\mathcal{L} = 10^{27} \text{cm}^{-2} \text{s}^{-1}$ at 7 ZTeV
 - ~600 bunches of 7x10⁷ Pb⁸²⁺ ions
 - $\epsilon_{H,V} = 1.2 \mu m$
 - $\beta^* = 0.5m$
 - To combat IBS and space charge
 on SPS flat bottom, Complicated gymnastics in PS & SPS (splitting in bunchlets in PS, recombining in SPS using 100MHz system).
 - Scheme questioned in Chamonix XII (2003)
 - Decision to start with "EARLY" scheme, single bunch from LEIR > PS > SPS 10 times less bunches in the LHC, and twice β^* yielding 20 times smaller \mathcal{L}

- At half energy, \mathcal{L} divided by 4 (scales with E²)
 - Twice emittances expected in each plane
 - Twice β^* in each plane (as the beam is larger up/downstream IP)
 - 4x beam section $\sigma_x \cdot \sigma_z$
- First run in 2010 with single bunch "Early beam" demonstrated that bunchlets are unnecessary, and raised the bar high for 2011 run:
 - 137 bunches of 10⁸ Pb⁸²⁺ ions
 - $\epsilon_{H}=0.6\mu m$
 - $\epsilon_V = 1.0 \mu m$
 - $\beta^* = 3.5 \text{ m}$
 - L = 3.10^{25} cm⁻²s⁻¹ at 3.5 ZTeV to be compared to $\mathcal{L} = 5.10^{25}$ cm⁻²s⁻¹ at 7 ZTeV
- Modified "Nominal beam" in 2011 by suppressing the splitting in the PS, and shortening the batch spacing to 200ns in the SPS:
 - 358 bunches of 1.4 10⁸ Pb⁸²⁺ ions
 - $\epsilon_{H,V} = 0.9 \mu m$
 - $-\beta^* = 1 \text{ m}$
 - $\mathcal{L} = 5.10^{26} \text{ cm}^{-2}\text{s}^{-1}$ at 3.5 ZTeV to be compared to $\mathcal{L} = 10^{27} \text{ cm}^{-2}\text{s}^{-1}$ at 7 ZTeV
- Similar LEIR and PS beam for p-Pb in 2013

Scheme in 2011 and 2013

CER

SPS at extraction, after 12 transfers from PS, Batch spacing = 225 ns for p-Pb (200 for Pb-Pb)

Intensity evolution in 2012-13

10.

6.0

4.0

2.0

0.0

LEIR Performance in 2013

	design	P-Pb run 2013
n _b [Ions/bunch]	2.25E8	2.75E8
$\epsilon_{\rm HV}^{*}(1\sigma)$ [mm]	0.7	< 0.7
$\epsilon_{//}(2\sigma)$ [eV.s/u/bunch]	0.025	0.03

Remaining Issues

- Fluctuations of Linac3 current
 - modifies electron energy in cooler
 - in turn modifying energy of ion beam before RF capture
 - Manual adjustment of capture frequency
- Deviations from model (positive Q'_V)
- Loss at beginning of ramp
 - Will need more studies with beam
- Consolidation of diagnostics

- NA61/SHINE requested Be, incompatible with LHC Pb programme
- Fragmented Pb beam delivered, using same beam definition as LHC
 - Allowed to prepare Nominal beam in parallel in 2011 (free MD time)
 - SHINE's Be programme completed: 6 energies (13, 20, 30, 40, 80 & 160GeV/u)

H2 Beam Line for Fragmented Ion Beam

- New requests for Ar & Xe
 - Ar in Linac in 2013, rest of chain in 2014, 6 week physics run in 2015
 - Xe in Linac & chain in 2016, planned physics run in 2017
 - Schedule in competition with
 Pb for LHC and studies on Pb

Or:

Future LHC beams

- After LS1: $\mathcal{L} = 4.10^{27}$ cm⁻²s⁻¹ at 7 ZTeV possible by replacing batch expansion by compression in the PS, and increasing number of injections in SPS
- After LS2:request to increase peak luminosity beyond $\mathcal{L} = 6.10^{27} \text{ cm}^{-2}\text{s}^{-1}$ at 7 ZTeV (missing factor ~3 compared to 2011)
- Increase the number of bunches in the collider
 - Keep number of ions/bunch in LEIR
 - batch compression to 50ns in the PS
 - decrease batch spacing in the SPS

- Double number of ions/bunch in LEIR and
 ⁰ ⁵⁰ ¹⁰⁰ ¹⁵⁰ ²⁰⁰
 reinstate splitting to 100 ns in the PS (but factor 20% still missing)
 - need to address the loss at acceleration, if possible at all
 - Increase injection rep rate to 10Hz
- ... provided LHC can digest and keep the beam quality during its long injection plateau, cf talk TUPM1HA02 by M.Schaumann's:
 "Why does the LHC need a Stochastic Cooling System?" LEIR OPERATIONS FOR THE LHC AND FUTURE PLANS

100/50 ns scheme after LS2

For completeness: Bio-medical experiments

- Request for lighter ions (C, He, ...p)
- Will need
 - to redesign a slow extraction
 - install an extraction line
 - a second ion source
- No schedule for the moment

- LEIR's contribution to the success of the LHC HI programme has been essential
- The machine will be more and more in demand over the coming years:
 - for the LHC
 - for the SPS fixed target programme,
 - possibly for bio-medical experiments.
- Some issues still need to be addressed, which will necessitate studies with beam.

