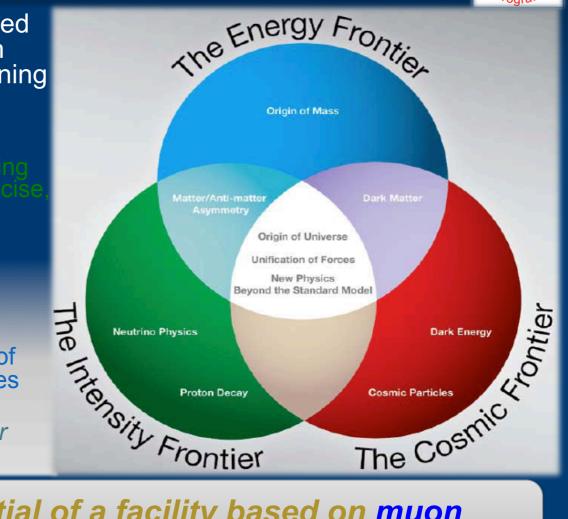


An Overview of the U.S. Muon Accelerator Program

Mark A. Palmer June 10, 2013

The Aims of the Muon Accelerator Program

😴 Fermilab


Muon accelerator R&D is focused on developing a facility that can address critical questions spanning two frontiers...

The Intensity Frontier:

with a *Neutrino Factory* producing well-characterized v beams for precise high sensitivity studies

The Energy Frontier: with a *Muon Collider* capable of reaching multi-TeV CoM energies

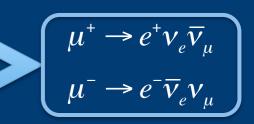
and a **Higgs Factory** on the border between these Frontiers

The unique potential of a facility based on muon accelerators is physics reach that <u>SPANS 2 FRONTIERS</u>

2

Outline

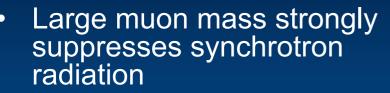
- The Physics Motivations
- The Muon Accelerator Program
- The R&D Challenges
- Some Recent R&D Highlights
- The Staging Study and Timelines
- Conclusion


THE PHYSICS MOTIVATIONS

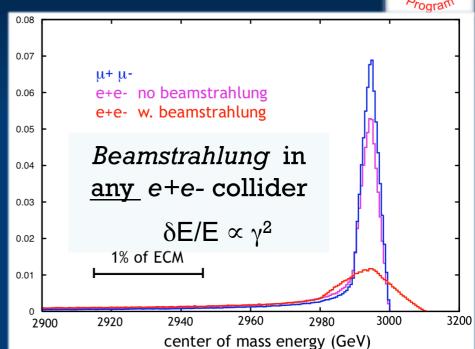
COOL13 - Mürren, Switzerland 4

The Physics Motivations

- μ an elementary charged lepton:
 - 200 times heavier than the electron
 - $-2.2 \,\mu s$ lifetime at rest
- Physics potential for the HEP community using muon beams
 - Tests of Lepton Flavor Violation
 - Anomalous magnetic moment ⇒ hints of new physics (g-2)
 - Can provide equal fractions of electron and muon neutrinos at high intensity for studies of neutrino oscillations the Neutrino Factory concept



- Offers a large coupling to the "Higgs mechanism" $\sim \left(\frac{m_{\mu}^2}{m^2}\right) \approx 4 \times 10^4$


Fermilab

- As with an e⁺e⁻ collider, a $\mu^+\mu^-$ collider would offer a precision probe of fundamental interactions – in contrast to hadron colliders

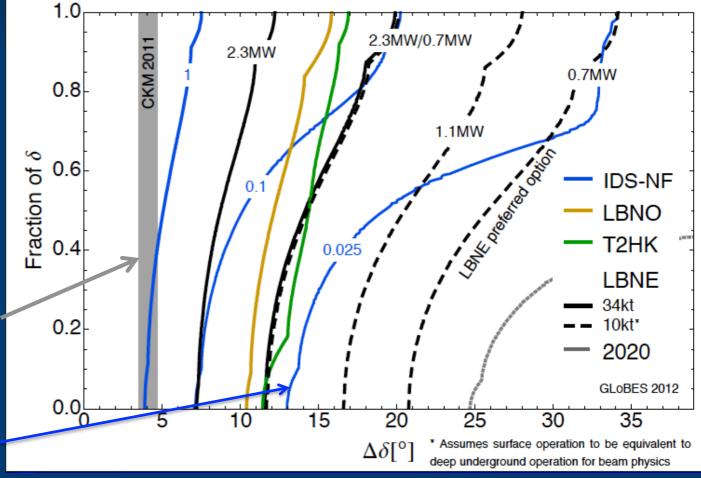
Muon Accelerator Physics

- Muons can be accelerated and stored using rings at much higher energy than electrons
- Colliding beams can be of higher quality with reduced beamstrahlung


- Short muon lifetime has impacts as well
 - Acceleration and storage time of a muon beam is limited
 - Collider ⇒ a new class of decay backgrounds must be dealt with
- Precision beam energy measurement by g-2 allows precision Higgs width determination
- Muon beams produced as tertiary beams:
 - Offers key accelerator challenges...
- 6 COOL13 Mürren, Switzerland

$$p \rightarrow \pi \rightarrow \mu$$

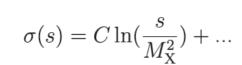
Fermilab



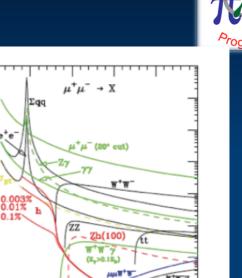
The Physics Needs: NeutrinosCP violation physics reach of various facilities

Measurement sensitivity in the quark sector

0.025 IDS-NF: 700kW target, no cooling, 2×10⁸ s running time 10-15 kTon detector


P. Coloma, P. Huber, J. Kopp, W. Winter – article in preparation

7 COOL13 - Mürren, Switzerland


June 10, 2013 **Fermilab**

Muon Collider Reach

- For √s < 500 GeV
 - SM thresholds: Z⁰h ,W⁺W⁻, top pairs
 - Higgs factory (√s≈ 126 GeV)
- For √s > 500 GeV
 - Sensitive to possible Beyond SM physics.
 - High luminosity required. 🗸
 - Cross sections for central (| θ | > 10°) pair production ~ R × 86.8 fb/s(in TeV²) (R ≈ 1)
 - At $\sqrt{s} = 3$ TeV for 100 fb⁻¹ ~ 1000 events/(unit of R)
- For √s > 1 TeV
 - Fusion processes important at multi-TeV MC

– An Electroweak Boson Collider 🖌

108

107

106

105

104

103

102

101

100

200

√s_{µµ}

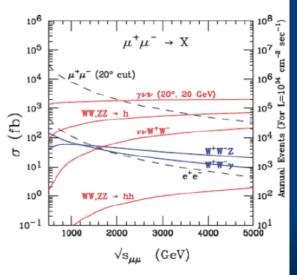
300

(GeV)

400

500

(fb)


 ν_{μ}

---- X

 $\bar{\nu}_{\mu}$

 W^{-}

 W^+

June 10, 2013 **Fermilab**

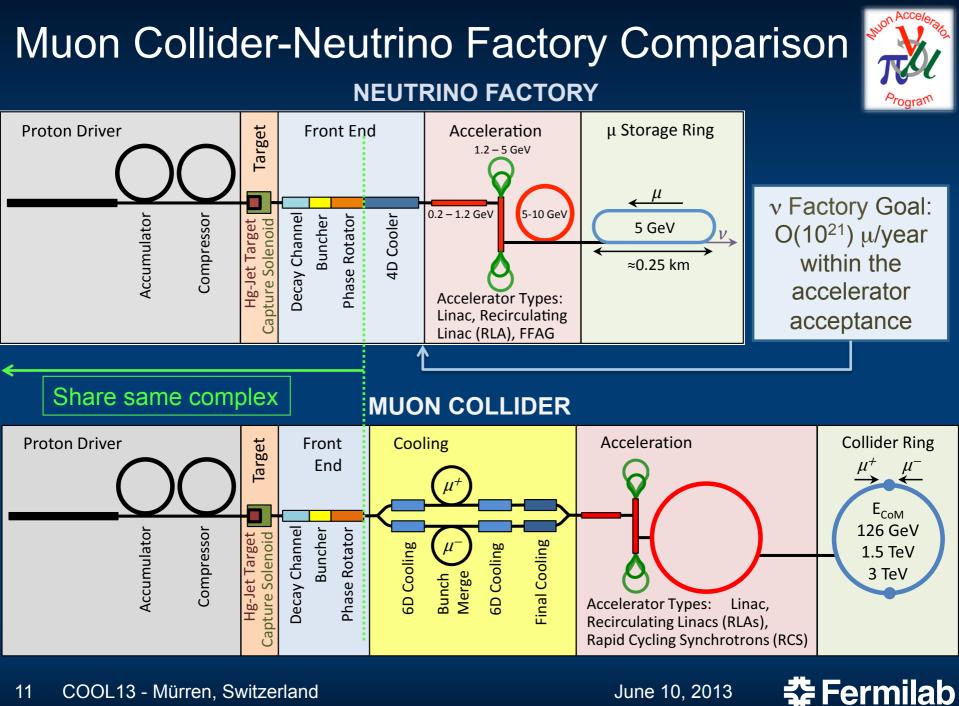
8

MUON ACCELERATOR PROGRAM

June 10, 2013 🛟 Fermilab

9 COOL13 - Mürren, Switzerland

The Muon Accelerator Program


Fermilab

During this decade:

• To deliver results that will permit the high-energy physics community to make an informed choice of the optimal path to a high-energy lepton collider and/or a next-generation neutrino beam facility

As well as...

- To explore the path towards a facility that can provide cutting edge performance at both the Intensity Frontier and the Energy Frontier
- To validate the concepts that would enable the Fermilab accelerator complex to support these goals

The MAP Feasibility Assessment

Feasibility Assessment: Phase I

FY13 - FY15:

- Identify <u>baseline</u> design concepts
- Identify high leverage <u>alternative</u> concepts
- Identify key engineering paths to pursue:
 - RF
 - High Field Magnets
- Develop critical engineering concepts (eg, 6D Cooling Cell)
- Support major systems tests
 - MICE Step IV
 - MICE RFCC
 construction & testing

Feasibility Assessment: Phase II

FY16 - FY18:

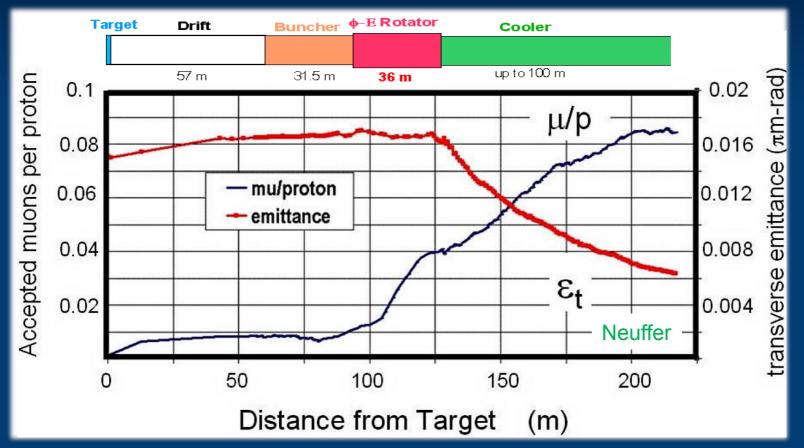
- Technical demonstration of critical <u>baseline</u> concepts
 - eg, 6D Cooling cell
- Pursue high leverage <u>alternative</u> concepts
- Assess technical and cost feasibility of <u>baseline</u> concepts
- Support major systems tests
 - MICE Step V/VI
 - 6DICE planning

Beyond Phases I & II

FY19 →

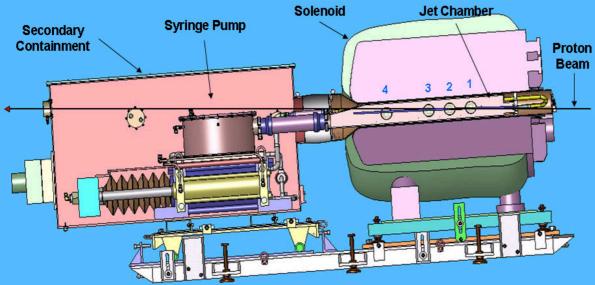
- Plan contingent on the conclusions from Phases I & II
- Goal is to launch the conceptual & technical design effort towards a staged implementation of a NF & MC?
- Advanced systems tests

Fermilab


THE R&D CHALLENGES

COOL13 - Mürren, Switzerland 13

Technology Challenges – Tertiary Production



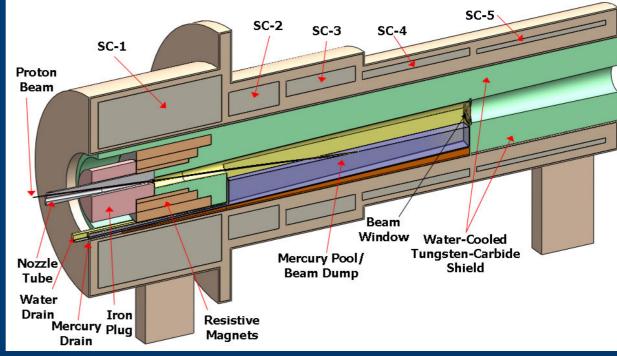
- A multi-MW proton source, *e.g.*, Project X, will enable O(10²¹) muons/year to be produced, bunched and cooled to fit within the acceptance of an accelerator.
- 14 COOL13 Mürren, Switzerland

Technology Challenges - Target

- The MERIT Experiment at the CERN PS
 - Proof-of-principle demonstration of a liquid
 Hg jet target in high-field solenoid in Fall `07
 - Demonstrated a 20m/s liquid Hg jet injected into a 15 T solenoid and hit with a 115 KJ/ pulse beam!
 - Technology OK for beam powers up to 8 MW with a repetition rate of 70 Hz!

, 1 cm

Technology Challenges – Capture Solenoid



 A Neutrino Factory and/or Muon Collider Facility requires challenging magnet design in several areas:
 – Target Capture Solenoid (15-20T with large aperture)

 $E_{stored} \sim 3 \text{ GJ}$

O(10MW) resistive coil in high radiation environment

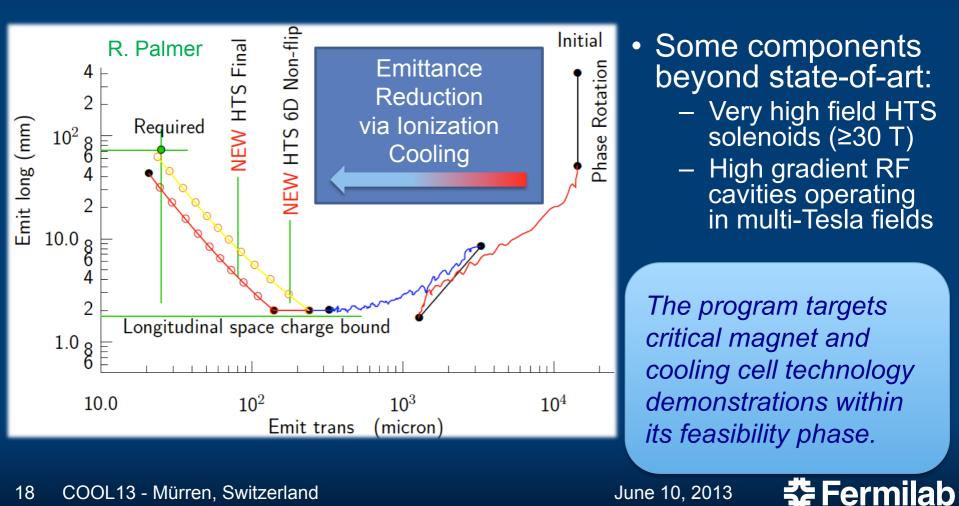
Possible application for High Temperature Superconducting magnet technology

June 10, 2013 **Fermilab**

Technology Challenges - Cooling

- Tertiary production of muon beams ⇒
 - Initial beam emittance intrinsically large
 - Cooling mechanism required, but no radiation damping
- - dE/dx energy loss in materials
 - RF to replace p_{long}

The Muon Ionization Cooling Experiment: Demonstrate the method and validate our simulations



Technology Challenges - Cooling

• Development of a cooling channel design to reduce the 6D phase space by a factor of $O(10^{6}-10^{7}) \rightarrow MC$ luminosity of $O(10^{34})$ cm⁻² s⁻¹

Fermilab

Technology Challenges – RF

- A Viable Cooling Channel requires
 - Strong focusing and a large accelerating gradient to compensate for the energy loss in absorbers
 ⇒ Large B- and E-fields superimposed

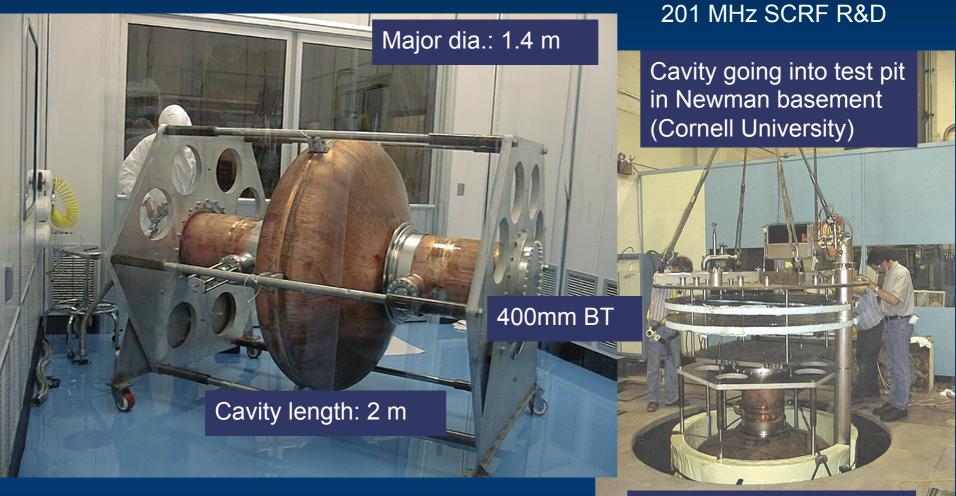
 Operation of RF cavities in high magnetic fields is a necessary element for muon cooling

- Control RF breakdown in the presence of high magnetic fields
- The MuCool Test Area (MTA) at Fermilab is actively investigating:
 - Operation of RF cavities in the relevant regimes
 - Breakdown mitigation techniques

19 COOL13 - Mürren, Switzerland

Technology Challenges - Acceleration

Fermilab

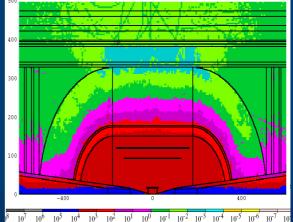

- Muons require an ultrafast accelerator chain
 ⇒ Beyond the capability of most machines
- The accelerator chain requires a range of accelerator technologies

- Superconducting Linacs
- Recirculating Linear Accelerators (RLAs)
 - New designs: Utilize multi-pass arcs
 - Proposed electron demonstration (JEMMRLA)
- Fixed-Field Alternating-Gradient (FFAG) Machines
 - EMMA at Daresbury Lab is a test of the promising non-scaling type
- Rapid Cycling Synchrotrons (RCS/VRCS)

Superconducting RF Development

Pit: 5m deep X 2.5m dia.

Technology & Design Challenges – Ring, Magnets, Detector

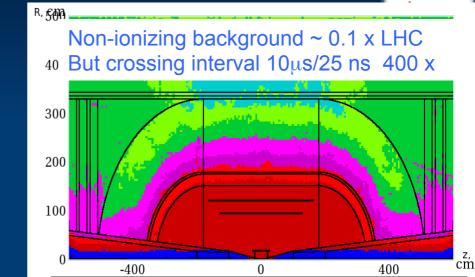


ermilab

- Emittances are relatively large, but muons circulate for ~1000 turns before decaying
 - Lattice studies for 126 GeV,
 1.5 & 3 TeV CoM
- High field dipoles and quadrupoles must operate in high-rate muon decay backgrounds

MARS energy deposition map for 1.5 TeV collider dipole

- Magnet designs under study
- Detector shielding & performance
 - Initial studies for 126 GeV, 1.5 TeV, and
 3 TeV using MARS background simulations
 - Major focus on optimizing shielding configuration
- 22 COOL13 Mürren, Switzerland



Backgrounds and Detector

Much of the background is soft and out of time

 Nanosecond time resolution can reduce backgrounds by three orders of magnitude
 Requires a fast, pixelated tracker and calorimeter.

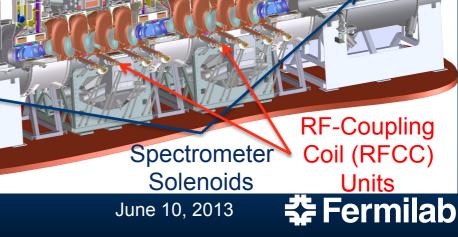
 $10^8 \ 10^7 \ 10^6 \ 10^5 \ 10^4 \ 10^3 \ 10^2 \ 10^1 \ 10^0 \ 10^{-1} \ 10^{-2} \ 10^{-3} \ 10^{-4} \ 10^{-5} \ 10^{-6} \ 10^{-7} \ 10^{-8}$

	Cut	Rejection	10 ⁸ 10 ⁷		0.9206E-03	tron fluenc	e (cm^	-2 per bunch x-ing) Meen 15.91
Tracker hits	1 ns, dedx	9x10 ⁻⁴	10 ⁶ 10 ⁵	gamma	a	10 ⁶		gamma
Calorimeter neutrons	2 ns	2.4x10 ⁻³	10 ⁴ 10 ³	Survey and the second second		10 ⁵ 10 ⁴		
Calorimeter photons	2 ns	2.2x10 ⁻³	0	0.05 GeV/c	0.1		0 0	200

RECENT R&D PROGRESS – SOME HIGHLIGHTS

24 COOL13 - Mürren, Switzerland

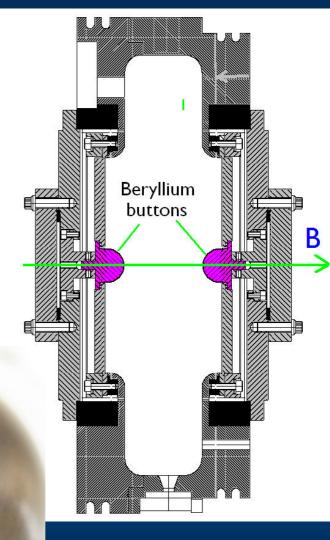
Recent Progress I - MICE


First Coupling Coil Cold Mass Being Readied for Training

First Spectrometer Solenoid Now-Commissioned

Fermilab Solenoid Test Facility

- Currently preparing for MICE Step IV
- Includes:
 - Spectrometer Solenoids
 - First Focus Coil
- Provides:
 - Direct measurement of interactions with absorber materials
 - Important simulation input

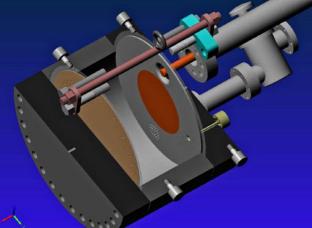


Recent Progress II – Cavity Materials



Breakdown tests with Be and Cu Buttons

- Both reached ~31 MV/m
- Cu button shows significant pitting
- Be button shows minimal damage
- Materials choices offer the possibility of more robust operation in mangetic fields



June 10, 2013 🛟 Fermilab

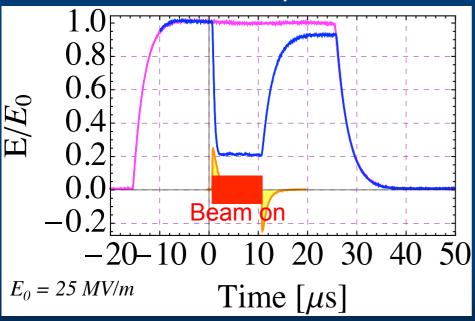
Recent Progress III – Vacuum RF

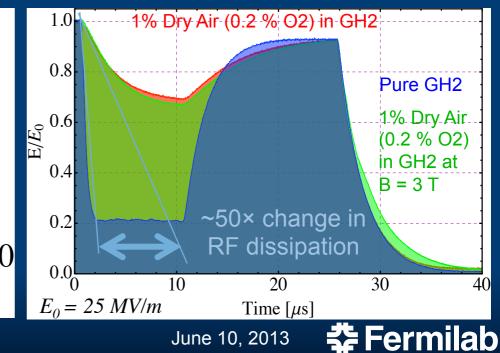
All-Seasons

Cavity (designed for both vacuum and high pressure operation)

- Vacuum Tests at B = 0 T & B = 3 T
 Two cycles: B₀ ⇒ B₃ ⇒ B₀ ⇒ B₃
- No difference in maximum stable operating gradient

– Gradient ≈ 25 MV/m

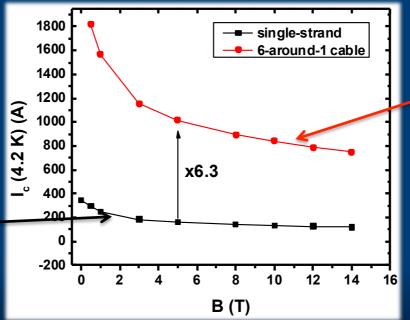

 Demonstrates possibility of successful operation of vacuum cavities in magnetic fields with careful design


Recent Progress IV: High Pressure RF

- Gas-filled cavity
 - Can moderate dark current and breakdown currents in magnetic fields
 - Can contribute to cooling
 - Is loaded, however, by beam-induced plasma

- Electronegative Species
 - Dope primary gas
 - Can moderate the loading effects of beam-induced plasma by scavenging the relatively mobile electrons

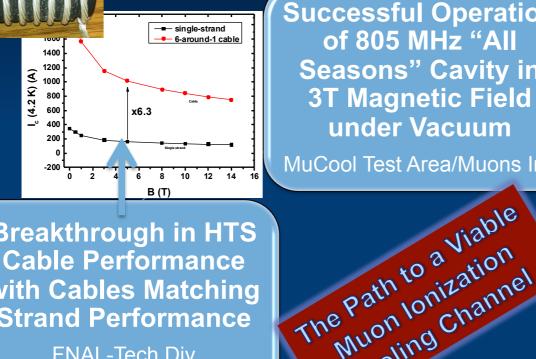
Recent Progress V: High Field Magnets



BSCCO-2212 Cable -Transport measurements show that FNAL cable attains 105% J_c of that of the single-strand

Progress towards a demonstration of a final stage cooling solenoid:

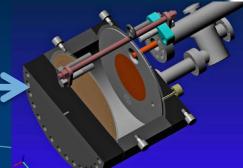
- Demonstrated 15+ T (16+ T on coil)
 - ~25 mm insert HTS solenoid
 - BNL/PBL YBCO Design
 - Highest field ever in HTS-only solenoid (by a factor of \sim 1.5)
- Will soon begin preparations for a test with HTS insert + mid-sert in NC solenoid at NHFML ⇒ >30 T



Multi-strand cable utilizing chemically compatible alloy and oxide layer to minimize cracks

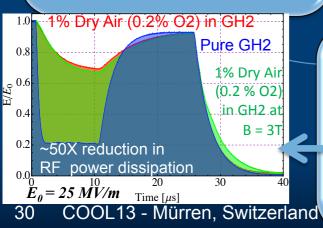
🛟 Fermilab

MAP: Recent Technology Highlights



Successful Operation of 805 MHz "All Seasons" Cavity in **3T Magnetic Field** under Vacuum

MuCool Test Area/Muons Inc


Muon Ionization

cooling Channel

Breakthrough in HTS Cable Performance with Cables Matching **Strand Performance**

FNAL-Tech Div T. Shen-Early Career Award

Demonstration of High Pressure RF Cavity in 3T Magnetic **Field with Beam**

> Extrapolates to μ-Collider Parameters **MuCool Test Area**

World Record HTS-only Coil 15T on-axis field 16T on coil **PBL/BNL**

June 10, 2013 **Fermilab**

THE MUON ACCELERATOR STAGING STUDY (MASS) AND MAP TIMELINES

31 COOL13 - Mürren, Switzerland

A Staged Muon-Based Neutrino and Collider Physics Program

The plan is conceived in four stages, whose exact order remains to be worked out:

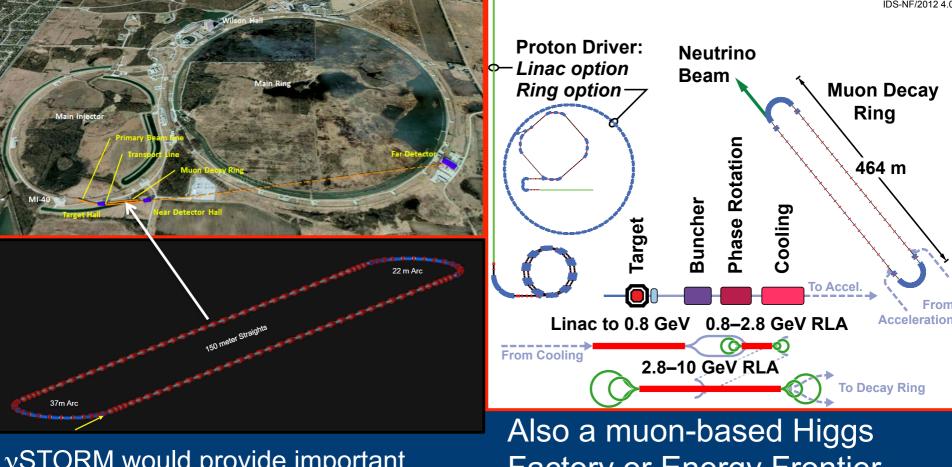
- The "entry point" for the plan is the vSTORM facility proposed at Fermilab, which can advance short-baseline physics by making definitive observations or exclusions of sterile neutrinos. Secondly, it can make key measurements to reduce systematic uncertainties in long-baseline neutrino experiments. Finally, it can serve as an R&D platform for demonstration of accelerator capabilities pre-requisite to the later stages.
- A stored-muon-beam Neutrino Factory can take advantage of the large value of θ₁₃ recently measured in reactor-antineutrino experiments to make definitive measurements of neutrino oscillations and their possible violation of CP symmetry.
- Thanks to suppression of radiative effects by the muon mass and the m_{lepton}^2 proportionality of the *s*-channel Higgs coupling, a "Higgs Factory" Muon Collider can make uniquely precise measurements of the 126 GeV boson recently discovered at the LHC.
- An energy-frontier Muon Collider can perform unique measurements of Terascale physics, offering both precision and discovery reach.

Muon Accelerators

Accelerator	Energy Scale		Performance			
Cooling Channel	~200	MeV	Emittance Reduction			
MICE	160-240	MeV	10%			
Muon Storage Ring	3-4	GeV	Useable μ decays/yr*			
vSTORM	3.8	GeV	<i>3x10</i> ¹⁷			
Intensity Frontier v Factory	4-10	GeV	Useable μ decays/yr*			
FNAL NF Phase I (PX Ph 2)	4-6	GeV	8x10 ¹⁹	←		
FNAL NF Phase II (PX Ph 2)	4-6	GeV	5x10 ²⁰			
IDS-NF Design	10	GeV	5x10 ²⁰	\rightarrow		
Higgs Factory	~126	GeV CoM	Higgs/yr			
s-Channel μ Collider	~126	GeV CoM	5,000-40,000			
Energy Frontier μ Collider	> 1	TeV CoM	Avg. Luminosity			
<i>Opt.</i> 1	1.5	TeV CoM	1.2x10 ³⁴ cm ⁻² s ⁻¹			
<i>Opt. 2</i>	3	TeV CoM	4.4x10 ³⁴ cm ⁻² s ⁻¹			
Opt. 3	6	TeV CoM	12x10 ³⁴ cm ⁻² s ⁻¹			
* Decays of an individual species (ie, μ ⁺ or μ ⁻)						

And Potential Staging Steps Program Baselines

Decays of all individual species (ie, µ of µ)


33 COOL13 - Mürren, Switzerland

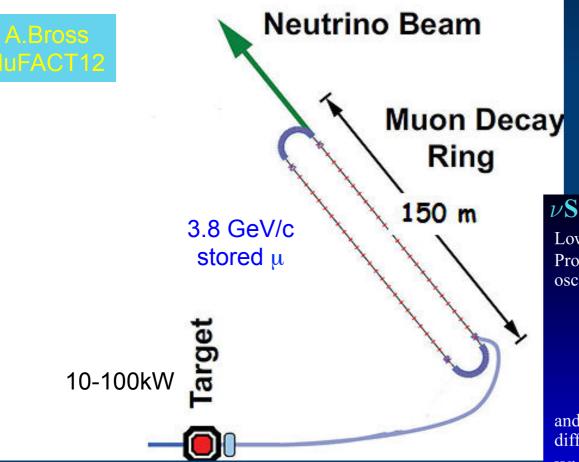
June 10, 2013 **Fermilab**

All proposed muon-based accelerators would easily fit at Fermilab

vSTORM (entry level Neutrino Factory)

vSTORM would provide important physics output and critical R&D leverage

34 COOL13 - Mürren, Switzerland


Factory or Energy Frontier Muon Collider

Intensity Frontier Neutrino Factory

Neutrinos from Stored Muons (arXiv: 1206.0294 (LOI), Fermilab P-1028)

An entry-level NF?

DOES NOT Require the Development of ANY New Technology

ν**STORM**

Low energy, low luminosity muon storage ring. Provides with $1.7 \times 10^{18} \mu^+$ stored, the following oscillated event numbers

$ u_e ightarrow u_\mu \operatorname{CC}$	330
$\bar{\nu}_{\mu} ightarrow \bar{\nu}_{\mu} \operatorname{NC}$	47000
$\nu_e \rightarrow \nu_e \operatorname{NC}$	74000
$\bar{ u}_{\mu} ightarrow \bar{ u}_{\mu} \operatorname{CC}$	122000
$\nu_e \rightarrow \nu_e \operatorname{CC}$	217000

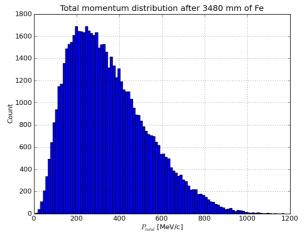
and each of these channels has a more than $10\,\sigma$ difference from no oscillations

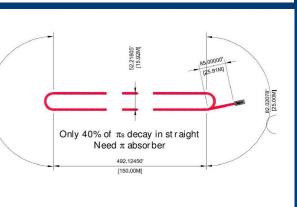
With more than 200 000 ν_e CC events a %-level ν_e cross section measurement should be possible

NuSTORM Workshop held Sept 21-22 @ FNAL: cross section measurement should be

(https://indico.fnal.gov/conferenceDisplay.py?confld=5710)

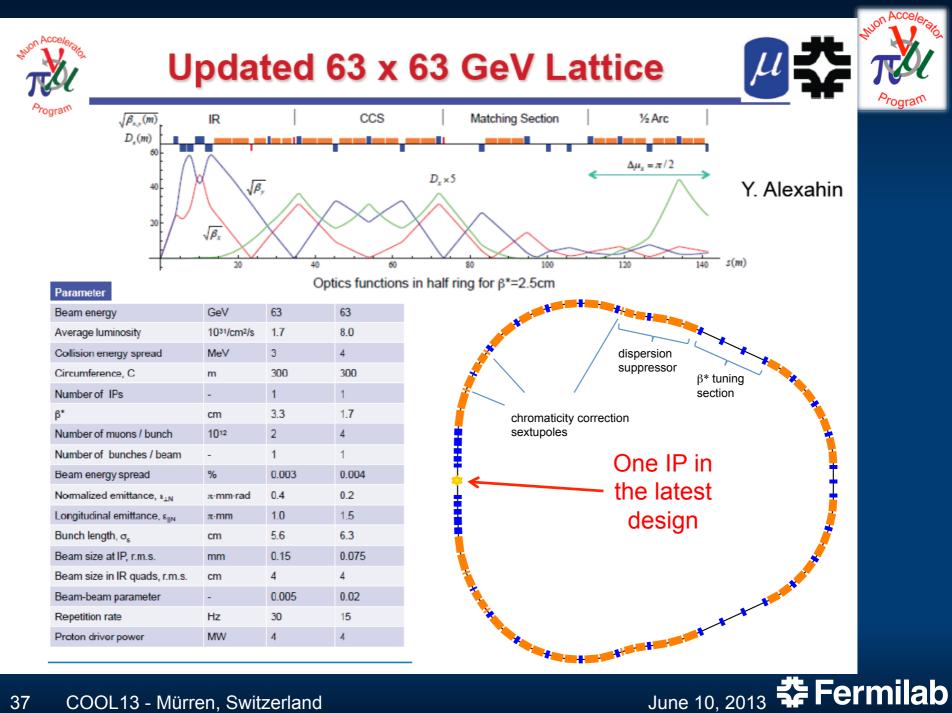
35 COOL13 - Mürren, Switzerland



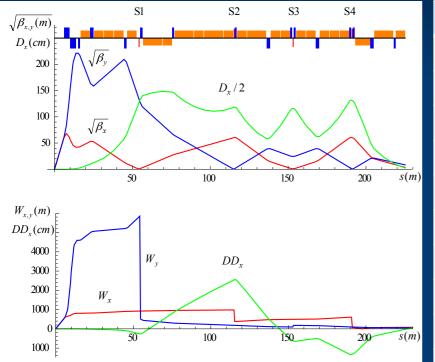

vStorm as an R&D platform

- A high-intensity pulsed muon source
- <u>10</u>0<p_µ<300 MeV/c muons
 - Using extracted beam from ring
 - -10^{10} muons per 1 µsec pulse
- Beam available simultaneously with physics operation
 - Sterile v search
 - v cross section measurements needed for ultimate precision in long baseline measurements
- vSTORM also provides the opportunity to design, build and test decay ring instrumentation (BCT, momentum spectrometer, polarimeter) to measure and characterize the circulating muon flux.

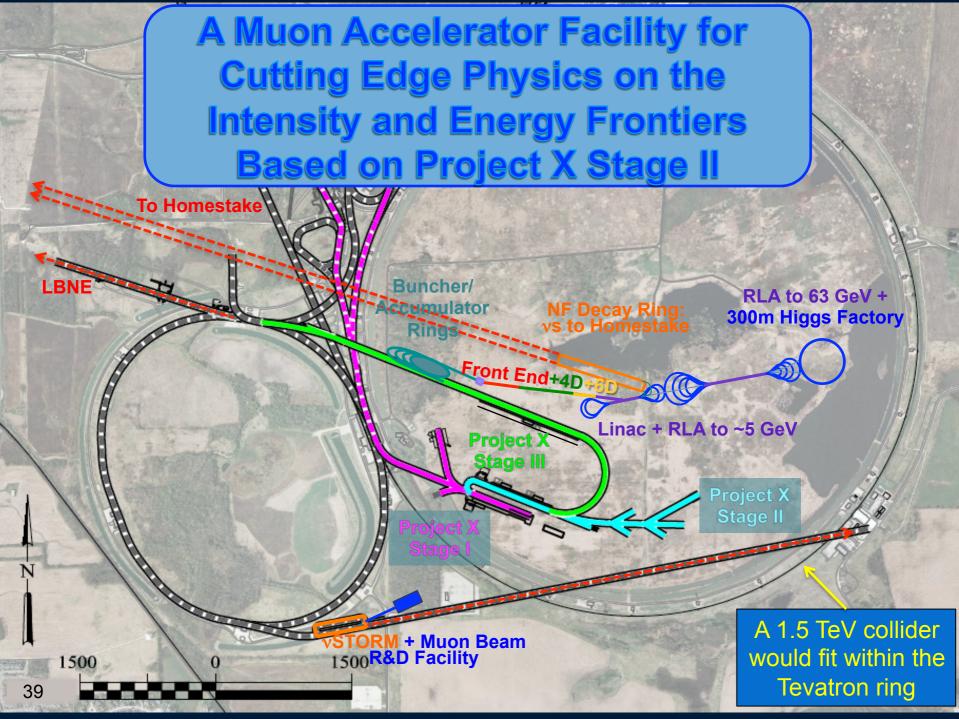
82.02078' 125.00MI



DECAY RING - PLAN



Multi-TeV Collider – 1.5 TeV Baseline



Larger chromatic function (Wy) is corrected first with a single sextupole S1, Wx is corrected with two sextupoles S2, S4 separated by 180° phase advance.

Parameter	Unit	Value	
Beam energy	TeV	0.75	
Repetition rate	Hz	15	
Average luminosity / IP	10 ³⁴ /cm ² /s	1.1	
Number of IPs, N _{IP}	-	2	
Circumference, C	km	2.73	
β*	cm	1 (0.5-2)	
Momentum compaction, α_p	10 ⁻⁵	-1.3	
Normalized r.m.s. emittance, $\epsilon_{\perp N}$	$\pi \cdot mm \cdot mrad$	25	
Momentum spread, σ_p/p	%	0.1	
Bunch length, $\sigma_{\rm s}$	cm	1	
Number of muons / bunch	10 ¹²	2	
Number of bunches / beam	-	1	
Beam-beam parameter / IP, ξ	-	0.09	
RF voltage at 800 MHz	MV	16	


How Could the Staged NF to Homestake Perform?

What if we send beam to LBNE?

- 1 MW, no muon cooling
- ⇒ 3 MW, w/cooling
- A MW, w/cooling

What if we were able to have a magnetized LAr detector?

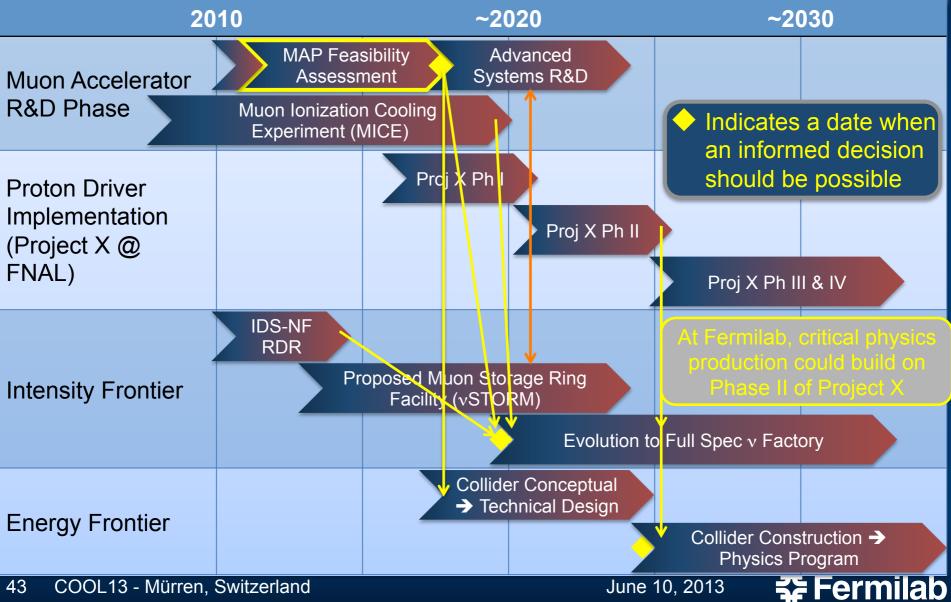
Neutrino Factory Staging (MASS)

System	Parameters	Unit	NuSTORM	L3NF	NF	IDS-NF	
Perform ance	stored μ+ or μ-/year	(8×10 ¹⁷	2×10 ²⁰	1.2×10 ²¹	1×10 ²¹	
Perfo ance	v_e or v_{μ}^{*} to detectors/yr		3×10 ¹⁷	8×10 ¹⁹	5×10 ²⁰	5×10 ²⁰	
	Far Detector	Туре	Super-Bind*	Mag LAr	Mag LAr	Super-Bind	
	Distance from ring	km	1.5	1300	1300	2000	
	Mass	kТ	1.3	10	30?	100	
Detector	magnetic field	т	2	0.5	0.5	1>2 ?	
	Near Detector	Туре	Liquid Ar	Liquid Ar	Liquid Ar	Liquid Ar	
	Distance from ring	m	50	100	100	100	
	Mass	kT	0.1	1	2.7	2.7	
	magnetic field	Т	No	No	No	No	
Neutrino Ring	Ring Momentum P _µ	GeV/c	3.8	5	5	10	
	Circumference C	m	350	600	600	1190	
	Straight section Length	m	150	235	235	470	
	Arc Length	m	25	65	65	125	
	Initial Momentum	GeV/c	3.8	0.22	0.22	0.22	
<u>io</u>	single pass Linac	GeV	None	0.9?	0.9?	0.9	
rat	4.5-pass RLA	GeV	None	0.92?	0.92?	4	
Acceleration	NS-FFAG Ring	GeV	None	None	None	10	
	SRF frequency linac/RLA	MHz	None	325/650	325/650	201	
	Number of cavities		None	50 + 26?	50 + 26?	50 + 26 + 25	
	Total Arc Length	m	50	550?	550?	550 +200	
Cooling			No	No	4D	4D	
Protor	Proton Beam Power	MW	0.2	1	3	4	
	Proton Beam Energy	GeV	60	3	3	10	
	protons/year	1×10 ²¹	0.2	41	125	25	
	Repetition Frequency	Hz	1.25	70	70	50	

* supports multiple detector technologies

↑ North

MAP Designs for a Muon-Based Higgs Factory and Energy Frontier Collider


Fermilab

Muon Collider Baseline Parameters

	r	Higgs Factory			<u>Multi-TeV</u>	Baselines
P Tur P Tur P Common P Tur P Tur P Common P Tur P Tu				Upgraded		
Compressor H ⁺ Ring H ⁺ Project X P ⁺ Target Alcon.			Initial	Cooling /		
¹² Fermila	ab Site Parameter	Units	Cooling	Combiner		
	CoM Energy	TeV	0.126	0.126	1.5	3.0
	Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008	1.25	4.4
	Beam Energy Spread	% 🔇	0.003	0.004	0.1	0.1
	Circumference	km	0.3	0.3	2.5	4.5
	No. of IPs		1	1	2	2
Exquisite Energy	Repetition Rate	Hz	30	15	15	12
Resolution	β*	cm	3.3	1.7	1 (0.5-2)	0.5 (0.3-3)
Allows Direct	No. muons/bunch	10 ¹²	2	4	2	2
Measurement	No. bunches/beam		1	1	1	1
of Higgs Width	Norm. Trans. Emittance, ϵ_{TN}	π mm-rad	0.4	0.2	0.025	0.025
	Norm. Long. Emittance, ϵ_{LN}	π mm-rad	1	1.5	70	70
Site Radiation	Bunch Length, $\sigma_{ m s}$	cm	5.6	6.3	1	0.5
mitigation with	Beam Size @ IP	μm	150	75	6	3
depth and lattice	Beam-beam Parameter / IP		0.005	0.02	0.09	0.09
design: ≤ 10 TeV	Proton Driver Power	MW	4 [♯]	4	4	4
	[#] Could begin operation with P	roject X Pha	ase 2 beam			

The Muon Accelerator Program Timeline

CONCLUDING REMARKS

June 10, 2013 🛟 Fermilab

44 COOL13 - Mürren, Switzerland

Some Thoughts...

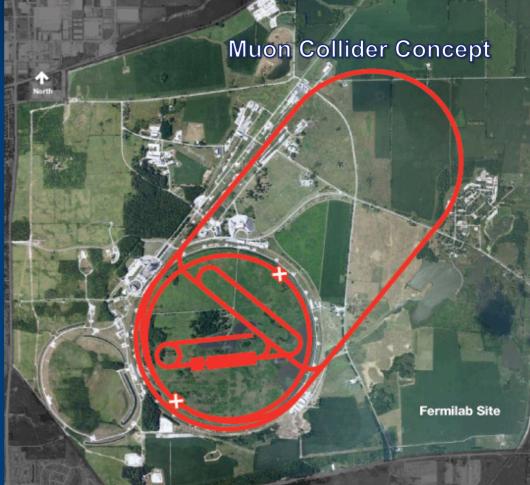
Fermilab

- The unique feature of muon accelerators is the ability to provide cutting edge performance on both the Intensity and Energy Frontiers
 - This is well-matched to the direction specified by the P5 panel for Fermilab
 - The possibilities for a staged approach make this particularly appealing in a time of constrained budgets
 - vSTORM would represent a critical first step in providing a muon-based accelerator complex
- World leading Intensity Frontier performance could be provided with a Neutrino Factory based on Project X Phase II
 - This would also provide the necessary foundation for a return to the Energy Frontier with a muon collider on U.S. soil

• A Muon Collider Higgs Factory

 Would provide exquisite energy resolution to directly measure the width of the Higgs. This capability would be of crucial importance in the MSSM doublet scenario.

The first collider on the path to a multi-TeV Energy Frontier lepton machine?


45 COOL13 - Mürren, Switzerland

Fermilab

Conclusion

- Through the end of this decade, the primary goal of MAP is demonstrating the feasibility of key concepts needed for a neutrino factory and muon collider
- Thus enabling an informed decision on the path forward for the HEP community

A challenging, but promising, R&D program lies ahead!

Muon Accelerator Program Contacts

- MAP Web-Site: <u>http://map.fnal.gov/</u>
- MAP Management Team:

Mark Palmer, Director: <u>mapalmer@fnal.gov</u> Robert Ryne, L1 Manager for Design and Simulation: <u>rdryne@lbl.gov</u>

Harold Kirk, L1 Manager for Technology Development: <u>hkirk@bnl.gov</u>

Daniel Kaplan, L1 Manager for Systems Demonstrations: <u>kaplan@iit.edu</u>

Alan Bross, L1 Manager for MICE Construction: bross@fnal.gov

Ron Lipton, L1 Manager for Detectors and Physics: lipton@fnal.gov

 US HEP Community Planning Effort Jean-Pierre Delahaye, Muon Accelerator Staging Study jpd@slac.stanford.edu

Acknowledgments

Fermilab

I would personally like to thank Steve Geer, Mike Zisman, Bob Palmer as well as the MAP L1 & L2 managers for their help in familiarizing me with the program since I took over as director a year ago

The MAP Effort -

- Labs: ANL, BNL, FNAL, JLAB, LBNL, ORNL, SLAC
- Universities: Chicago, Cornell, IIT, Princeton, UC-Berkeley, UCLA, UC-Riverside, UMiss
- Companies: Muons, Inc; Particle Beam Lasers