

Beam Cooling at HESR in the FAIR Project

12th September 2011

Dieter Prasuhn

HESR Consortium

ICPE-CA, Bukarest, Rumania

Rumania

Outline

- Design requirements for the HESR
- Requirements for Cooling
- p-bar injection and accumulation
- Summary

Modes of Operation with PANDA JÜLICH

Experiment Mode	High Resolution Mode	High Luminosity Mode
Target	Hydrogen Pellet target with 4*10 ¹⁵ cm ⁻²	
rms-emittance	1 mm mrad	
Momentum range	1.5 - 8.9 GeV/c	1.5 – 15.0 GeV/c
Intensity	1*10 ¹⁰	1*10 ¹¹
Luminosity	2*10 ³¹ cm ⁻² s ⁻¹	2*10 ³² cm ⁻² s ⁻¹
rms-momentum resolution	5*10 ⁻⁵	1*10-4

Basic Data of HESR

- Circumference 574 m
- Momentum (energy) range 1.5 to 15 GeV/c (0.8-14.1 GeV)
- > Injection of (anti-)protons from CR / RESR at 3.8 GeV/c
- ➤ Maximum dipole field: 1.7 T
- p_bar injection > Dipole field at injection: 0.4 T
 - ➤ Dipole field ramp: 0.025 T/s
 - ➤ Acceleration rate 0.2 (GeV/c)/s

Cooling requirements for HESR

- Internal target (d=4*10¹⁵ cm⁻²):
 - Emittance growth
 - Mean energy loss
 - Small momentum spread (10⁻⁵)
- Accumulation of p-bars in the HESR

Antiproton Chain (Modularised Start Version)

- acceleration in p-linac to 70 MeV
- multiturn injection into SIS18, acceleration to 4 GeV
- transfer of 4 SIS pulses to SIS100
- acceleration to 29 GeV and extraction of single bunch
- antiproton target and separator for 3 GeV antiprotons
- collection and pre-cooling of 10⁸ p-bars
 in the Collector Ring CR
- transfer of 10⁸ p-bars at 3 GeV to HESR
- <u>accumulation</u> and storage of antiprotons in the HESR

p-bar injection and accumulation in the HESR

The p-bar accumulation without RESR SCHUNGSZENTRUM

- 10⁸ p-bars collected in the CR
- 10 s cooling time in CR
- Transfer of 10⁸ p-bars to HESR
- In parallel:
 - ➤ Cooling of 10⁸ p-bars in CR
 - ➤ Cooling of 10⁸ p-bars in HESR
- Transfer of 2nd CR-stack into HESR
- 100 times repetition of that procedure
- ⇒ Accumulation of 10¹⁰ p-bars in HESR in 1000 s
- Acceleration, cooling, experiment

The accumulation process in HESR

Proof of principle experiment in the ESR

Properties of the ESR

circumference	108	m
$\gamma_{transition}$	2.37	
beam	ARGON	
mass number	40	
charge state	18	
kinetic energy	400	MeV/u
β	0.71	
γ	1.43	
revolution period	507	ns
∆p/p injected	1.5*10-3	
emittances hor./vert.	1	mm mrad

Experimental study of accumulation in ESR with barrier bucket and stoch. cooling

Fixed Barrier Case

Collaboration: FZJ, GSI, Tokyo, JINR, CERN

Red: Particles (energy left scale)

Blue: Barrier voltage (right scale)

- Injection every 13 s
- Accumulation over 500 s
- Saturation with 6*10⁷ Ar ions ^{0.05}

Results

- The idea of injection into the barrier bucket works
- Stochastic cooling is necessary to cool injected ions into the stable area
- Electron supports the efficiency by cooling oscillations by kicker ringing
- Simulation results agree with the experimental data

Question of the experimentalists:

Accumulation in HESR to more than 10^{10} p_bars?

Cooling time for different intensities

• The beam from CR with $\Delta p/p = 5*10^{-4}$ has to be cooled to 2.5*10⁻⁴

 Due to longer cooling times than 10 s the efficiency decreases

• 5*10¹⁰ p_bars seem to be possible within 5000 s accumulation time

Study of internal Target effects

Design and Construction of HESR

- Circumference: 184 m
- Maximum momentum: 3.7 GeV/c (Βρ=12 Tm)
- (un-)pol. Protons and Deuterons
- Electron and stochastic cooling
- Circumference: 574 m
- Maximum momentum: 15 GeV/c (Bρ=50 Tm)
- (un-)pol. Anti-protons
- stochastic (and electron) cooling

JÜLICH

HESR Prototyping and Tests with COSY

Parameters for the HESR stochastic cooler:

Momentum range (antiprotons): 1.5 - 15 GeV/c

Band width: 2 - 4 GHz, high sensitivity

Longitudinal cooling: Notch-Filter, ToF

Aperture of couplers: 89 mm

Octagonal Printed-Loop Coupler

Octagonal Slot-Coupler

Stochastic cooling pickup (prototy) ÜLICH installed in COSY

Same sensitivity as movable $\lambda/4$ structures

HESR Prototyping and Tests with COSY

Next step in COSY: Electron cooling up to maximum momentum

Electron Cooling: Development Steps

COSY: from 0.1 MeV to 2 MeV

Technological challenge

Summary

- Strong cooling is essential for HESR
- Stochastic cooling is designed, prototype structures for 2-4 GHz tested
- Electron cooling in HESR will improve the experimental conditions and the accumulation efficiency
- Tests will be performed at COSY with simultaneous electron and stochastic cooling in interaction with a thick internal target

