### Beam Diagnostics for Low Energy Proton and H<sup>-</sup> Accelerators

Vic Scarpine Fermilab 2012 BIW – April 16-19, 2012

# **\***

## Outline

- High-power proton/H- accelerator future
- Generic accelerator front-ends
- Typical diagnostic instruments and measurements
- Specific measurement cases with front-end accelerators at Fermilab
  - HINS High Intensity Neutrino Source
    - R&D Test Accelerator
  - PIP Proton Improvement Plan
    - Upgrade to Fermilab Linac
  - PXIE Project X Injector Study
    - Project X front-end test accelerator

Talk is not a laundry list of diagnostic instruments but more of a discussion of generic front-end with a few specific measurement cases

# Existing Beam Power Landscape

"Intensity frontier" pushing proton/H- accelerators to higher beam powers:

- Neutrino physics
- Rare decay physics
- Accelerator driven systems (ADS)



# Future Beam Power Landscape

A "large" number of upgrades or new high power accelerators are on the horizon.

Drives diagnostics to be either:

- Non-intercepting
  - Instrument survival and minimize beam loss
- Reduced beam power operation
  - Beam chopper



### Challenges for High Power Proton/H-Accelerators

- Producing high-quality beams in the injector system (high brightness, low halo) at high duty factor
- Accelerating high beam currents to high energy
  - High-duty factor, high-power RF systems, structures and components; for RF efficiency and practicality, SCRF is the technology of choice
- Transporting high power beams while maintaining beamloss at a level where routine maintenance is possible (<1 Watt/m)</li>
  - Acceleration of beams from keVs to GeVs with little emittance growth, and minimization of halo growth
  - Understanding and control of collective effects that have the potential to generate large-amplitude particles
  - Systems for stripping, collimation, low-loss extraction, machine protection
- Target systems capable of handling extreme power densities and extreme radiation environments (~ 1e5 Rem/hr beam off)

## **"Generic" Front-Ends**



| HINS                    | PIP                                                                                                                | PXIE                                                                                                                                   |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Proton (H- later)       | H-                                                                                                                 | H-                                                                                                                                     |  |
| 50 KeV                  | 35 KeV                                                                                                             | 30 KeV                                                                                                                                 |  |
| up to 20 mA             | up to 65 mA                                                                                                        | 5 mA LEBT, 1 mA linac                                                                                                                  |  |
| 2.5 MeV                 | 750 KeV                                                                                                            | 2.1 MeV                                                                                                                                |  |
| up to 10 Hz             | 15 Hz                                                                                                              | CW                                                                                                                                     |  |
| 3 @ 2.5 Hz<br>1 @ 10 Hz | <b>100 μs</b>                                                                                                      | 1 $\mu$ s $\rightarrow$ infinite                                                                                                       |  |
| 325 MHz<br>2012 BIW -   | 201 MHz                                                                                                            | 162.5 MHZ                                                                                                                              |  |
|                         | HINS<br>Proton (H- later)<br>50 KeV<br>up to 20 mA<br>2.5 MeV<br>up to 10 Hz<br>3 @ 2.5 Hz<br>1 @ 10 Hz<br>325 MHz | HINSPIPProton (H- later)H-50 KeV35 KeV30 KeV35 KeVup to 20 mAup to 65 mA2.5 MeV750 KeVup to 10 Hz15 Hz3 @ 2.5 Hz100 μs1 @ 10 Hz201 MHz |  |

# Functional Requirements

- What beam measurements are required to meet the goals of the accelerator program?
- Functional requirement guidelines should drive diagnostics
  - This is seldom the case
- "Operational" vs "Commissioning" Requirements
  - Operational Instrumentation required to monitor normal beam operations as well as identify potential problems
  - Commissioning instrumentation required to *characterize* beamline performance
    - Nominally a super-set of operational instrumentation
    - What defines a full set of beamline characteristics?
      - When does "operation" knowledge bleed over to "academic" interest
      - Few R&D front-ends to test diagnostics

# "Typical" LEBT Diagnostics

What to measure and why?

- Stability of Ion Source (operational)
- Quality of beam entering RFQ (operational?)

Usual operational diagnostics:

Beam current in LEBT → toroid, DCCT

Additional: (some subset during commissioning)

- Transverse beam profile at end of LEBT
  - Wire scanners/multi-wires
- Transverse emittance at source and RFQ entrance
  - Slit + wire scanner, Allison scanner (water cooled)
- Beam energy (not usually measured)
  - Time-of-flight, spectrometer
- Mapping of beam position at RFQ entrance versus solenoid settings
  - Steering of beam through solenoids
  - Wire scanner/multi-wire
  - Laser wires (H- +  $\gamma \rightarrow$  H<sup>o</sup> + e-) see Y. Liu talk
    - Non-intercepting

April 18, 2012

2012 BIW - Scarpine

Note: At these beam energies (30-50 KeV), H-/proton deposited in < 1 µm of materials

 Thermal issues important



## "Typical" MEBT Diagnostics

What to measure and why?

- Stability of RFQ beam
- Operation of MEBT
  - For example, operation of buncher cavities or MEBT chopper

Usual diagnostics:

- Beam current into and out of MEBT
  - Beam toroid. DCCT
- Beam position along MEBT
  - BPMs
- Bunch phase along MEBT (to phase in any MEBT cavities)

- BPMs

- Transverse beam profile
  - Wire scanner, multi-wire, laser wire (H-), Ionization profile monitor, beam fluorescense
    - Non-intercepting

Additional: *(usually in commissioning):* Transverse beam halo

- Wires, lasers (H-)?
- good place for R&D
- Longitudinal beam profile
- Bunch Shape Monitor (BSM), lasers (H-) Longitudinal beam halo
  - BSM? Lasers (H-)?
  - good place for R&D

Transverse emittance

• Slit + wires, quad or solenoid scans, laser emittance monitor?

Beam energy

• Time-of-flight, spectrometer

### <u>Measurement Example</u> Fermilab High Intensity Neutrino Source (HINS)

Proton source and LEBT beam measurements

### HINS Proton Source and LEBT Beam Measurements



| Duo-plasmatron Proton Source |         |  |  |
|------------------------------|---------|--|--|
| Energy 50 keV                |         |  |  |
| Peak Current                 | > 20 mA |  |  |
| Pulse                        | 3 msec  |  |  |
| Rep. rate                    | 2.5 Hz  |  |  |

|        | Name                         | Current [Amp] | B [Gauss] |  |
|--------|------------------------------|---------------|-----------|--|
| SOL-U  | Upstream solenoid            | 850           | 7900      |  |
| SOL-D  | Downstream solenoid          | 850           | 7900      |  |
| DIP-UH | Upstream horizontal dipole   | 3             | 100       |  |
| DIP-UV | Upstream vertical dipole     | 3             | 100       |  |
| DIP-DH | Downstream horizontal dipole | 3             | 100       |  |
| DIP-DV | Downstream vertical dipole   | 3             | 100       |  |



## **A Typical Wire Scan**















#### **Source Species**

Green – Source Extractor Voltage Yellow – LEBT Toroid Current Red – Straight ahead Faraday Cup Blue – Spectrometer Faraday Cup (bend)

- Downstream solenoid optimized for each species
- Upstream solenoid fixed at 470 A
- ~ 40% Protons
- ~ 30% H2+
- ~ 30% H3+
- As measured by LEBT toroid

### Measurement Example Fermilab Proton Improvement Plan (PIP) Upgrade to the Linac Front-End

**RFQ Energy Measurement** 

# Fermilab PIP Front-End Upgrade

Upgrade Fermilab linac front-end :

- Replace present sources and Cockcroft-Walton
- Dual H- sources 65 mA @ 35 KeV
- New 201.25 MHz, 750 KeV, 4-rod RFQ







## **PIP Front-End**

## Commissioning LEBT H- Source Diagnostics RFQ 8888

# RFQ Commissioning Test Setups

- · Beam profile and beam position measurements
- Beam transmission efficiency



•

•

Transverse emittance measurements

Beam transmission efficiency



### Fermilab PIP Absolute Energy Measurements

#### Which technique?

- 1. Energy spectrometer?
  - Fairly straight forward
  - Lots of pieces, complicated magnetic field, beam alignment
- 2. Time of Flight (ToF)?
  - Simpler setup
  - Usually requires a sharp edge to get absolute energy
  - If velocity is constant then can infer absolute energy using multiple BPMs
- 3. Gas scattering system with solid-state detector
- PIP choice Time-of-Flight
  - Two close BPMs for gross energy
  - Two further apart BPMs for finer energy resolution



### **RFQ Energy Measurement** by Time of Flight at HINS



#### Difficult without beam edge

Signals from toroid and two BPM buttons, all downstream of the RFQ

Upper display: 2 µsec/div Lower display: 20 nsec/div

Lower display shows the 44 ns delay expected for transit of 2.5 MeV beam between the BPM two buttons separated by 0.96 meters

Beam current is about 3 mA



RF = 201.25 MHz → 1/RF = 4.969 ns



# Calculated Energy Sensitivities

How much does the energy change with length or time mis-measurement?

|            | dVel/dE<br>((m/s)/keV) | dE/dL<br>(keV/mm) | dt/dE<br>(ps/keV) | dE/dt<br>(keV/ps) | dPhase/dE<br>(deg/keV) | dE/dPhase<br>(keV/deg) |
|------------|------------------------|-------------------|-------------------|-------------------|------------------------|------------------------|
| BPM 1 to 2 | 7.983e3                | 9.846             | -8.471            | 0.118             | -0.613                 | -1.631                 |
| BPM 2 to 3 | 7.983e3                | 3.692             | -22.589           | 0.044             | -1.635                 | -0.612                 |
| BPM 1 to 3 | 7.983e3                | 2.685             | -31.06            | 0.032             | -2.248                 | -0.445                 |

#### How much does the energy change if you pick the wrong number of RF cycles?

|            | NO | E @ N0 – 1 | E @ N0  | E @ N0 + 1 |
|------------|----|------------|---------|------------|
| BPM 1 to 2 | 2  | 2016 KeV   | 750 KeV | 389 KeV    |
| BPM 2 to 3 | 6  | 1032 KeV   | 750 KeV | 571 KeV    |
| BPM 1 to 3 | 9  | 941 KeV    | 750 KeV | 613 KeV    |

# (1) ToF Using Phase Monitor

Feed BPM signals through low-pass filters into phase monitor



|            | Del-Phase<br>(deg) | NO | ToF (ns) | Vel (m/s) | Beta   | Gamma  | Energy<br>(KeV) |
|------------|--------------------|----|----------|-----------|--------|--------|-----------------|
| BPM 1 to 2 | 224                | 2  | 12.771   | 1.157e7   | 0.0386 | 1.0007 | 701             |
| BPM 1 to 3 | 235                | 9  | 46.578   | 1.163e7   | 0.0388 | 1.0008 | 708             |

### (2) Direct Scope Measurements All three BPM signals into high-BW scope – no filters, no phase monitor



### (3) Spectrometer Magnet Measurement (preliminary)



Preliminary RFQ Energy: 701 +/- 2 +/- 7 KeV

2012 BIW - Scarpine

### <u>Measurement Example</u> Fermilab High Intensity Neutrino Source (HINS)

RFQ Beam Measurements of Longitudinal Bunch Shape from Fast Faraday Cup



#### Longitudinal Bunch Shape – Fast Faraday Cup

- Buried 50  $\Omega$  transmission time under ground plane
- Small aperture to all beam transmission
- High-Bandwidth → ~ 10 GHz

#### Many thanks to Craig Deibel at SNS



30

# Longitudinal Shape VS RFQ Power

Feed fast Faraday Cup into high bandwidth scope to measure bunch shape.





## Bunch Shape Along Pulse





## Fermilab Project X Injector Experiment (PXIE)



- CW H- source delivering 5 mA at 30 keV
- LEBT with beam pre-chopping
- CW RFQ operating at 162.5 MHz and delivering 5 mA at 2.1 MeV
- MEBT with integrated wide band chopper and beam absorbers capable of generating arbitrary bunch patterns at 162.5 MHz, and disposing of 4 mA average beam current
- Low beta superconducting cryomodules, starting at 2.1 MeV, capable of accelerating 1 mA to 15 MeV
- Beam dump capable of accommodating 1 mA at 15 MeV (15 kW) for extended periods.
- Associated beam diagnostics, utilities and shielding to support operation



### PXIE LEBT "Operational" Instrumentation





#### **Working Parameters**

- One 30 KeV H- source for PXIE
  - 5 mA DC beam
  - Two solenoids
  - Continuous beam only

#### Instrumentation

- One beam current monitor DCCT
- Emittance station → two
  Allison-type scanners
  - ~ 150 watts beam power
  - Need water cooling for slits
- Full LEBT characterization
  before connection to RFQ



- Ion type: H-
- Output energy: 2.1 MeV, same as input
- Max bunch freq: 162.5 MHz
- Operational beam current: 1 10 mA
- Nominal input beam current: 5 mA
- Particles per bunch: 1.8e8
  nominal
- Bunch extinction: < 1e-4

MEBT Operational Beam Measurements: (red = CW)

- Transverse position BPMs
- Bunch Phase BPMs
- Beam Current RWCM (resistive wall current monitor)
- Extinction RWCM
- Transverse shape wire scanners, laser wires
- Transverse emittance slit/multiwire
- Longitudinal shape water-cooled Fast Faraday Cup, X-ray BSM, laser wires
- Absorber Profiler OTR Imager





## Summary

- Many upgraded or new proton/H- accelerators on the horizon
- Although many front-ends have a common layout, beam operating conditions can be completely different
  - This drives the requirements for beam diagnostics
- At these low  $\beta$ 's, characterization of the beam at the front-end limit the performance of the rest of the linac
- Upcoming high-power linacs are placing stringent requirements on limiting beam interaction
  - This is driving "non-intercepting" instrumentation
  - Opening the door for new instrumentation including previously ruled out because of cost or complexity