Measurements, Predictions, Comparisons and Errors

Arne Freyberger Operations Dept. Accelerator Division JLAB

April 17, 2012

APF JLAB Accelerator Operations

BIW2012 April17, 2012

Outline

- 1 Measurements and Their Uncertainties
- Probability Distribution and Measurement Uncertainty
 - 3) Why is everything Gaussian?: The Central Limit Theorem
- Measured versus True, Systematic Uncertainties, Combining Uncertainties
- 6 Whoops, not everything is Gaussian: Correlated Quantities
- Particle/Nuclear Physics Approach to Uncertainties and some Accelerator Based Examples
 - Emittance and TWISS parameter measurement: Quad Scan and Wire Scanners
 - Using Monte Carlo to Estimate SRF Cryogenic Loads
 - Maximum Likelihood: For when all else fails

References and Summary

An accelerator is an overwhelming source of measurements:

- Beam position, size, energy, intensity, bunch length, energy spread, polarization
- RF systems gradient, frequency, phase, cathode current
- Cryogenics Pressure, flow, temperature, valve location
 - Magnets Current, Voltage, Temperature, LCW flow
 - Vacuum Pressure, particle species

Understanding the uncertainty (or error) in these measurements is vital in the correct interpretation of the measurement/system.

APF JLAB Accelerator Operations

.

Ø

Every measurement has uncertainty. This is sometimes referred to as the *instrumental uncertainty* and its value is inherent to the device, This defines the precision of the device.

Bit Resolution 8bit ADC, 8bits = 256, 5V/256bits = 0.02V/bit Circuit Noise Electronic noise sources ($\sqrt{4kT \cdot R \cdot B}$ thermal noise, shot noise, flicker noise) that limit the precision of the measurement.

Scale Resolution Old school this meant the graduations on the scale. In the digital age, this refers to the significant digits promoted to the User Interface or stored in the archiver. Often these are truncated to reserve space at a loss of precision.

. . .

Uncertainties

In general the uncertainty estimate should strive to equate to the root mean square $(RMS)^{\dagger}$ deviation of an infinite set of measurements. A measurement (the mean) and its uncertainty (RMS) is usually denoted as:

$$x \pm \Delta x$$

For a set of measurements (x_1, x_2, \ldots, n) ,

$$x = \bar{x} = \frac{1}{n} \sum x_i$$

$$\Delta x = RMS = \sqrt{\frac{1}{n-1}\sum (x_i - \bar{x})^2}$$

Note that these equations hold for all types of distributions.

 † Throughout this talk RMS refers to the root mean standard deviation.

APF JLAB Accelerator Operations

Probability Distributions

If the uncertainty of a measurement is defined as the RMS of a set of measurements (or its equivalent), then the uncertainty for a probability distribution is straight forward to determine via the analog continuous definitions:

$$\mu = \int_{-\infty}^{\infty} x P(x) dx$$

$$\sigma^2 = \int_{-\infty}^{\infty} (x-\mu)^2 P(x) dx = \int_{-\infty}^{\infty} x^2 P(x) dx - \mu^2$$

For the record:

$$1=\int_{-\infty}^{\infty}P(x)dx$$

The Gaussian Distribution Function

The most useful or common distribution is the Gaussian probability distribution:

$$P(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-0.5(\frac{x-\mu}{\sigma})^2}$$

where, $\bar{x} = \mu$ and $RMS = \sigma$.

Using the Gaussian distribution as a guide, an alternative definition of the uncertainty can be made:

 Δx defines a region such that the *true* value, \mathcal{X} has the probability of residing in the range:

$$(\bar{x} - \Delta x)) < \mathcal{X} < (\bar{x} + \Delta x)$$
 of 68.3%

With the most probable value for \mathcal{X} being \bar{x} .

APF JLAB Accelerator Operations

Central Limit Theorem

The sum of independent random numbers (of any distribution) becomes Gaussian distributed as $N \to \infty$

Everything is Gaussian

Integrating the Gaussian distribution over a limited range is best done numerically. Luckily these days this is a built in function in most spreadsheets and numerical libraries. The function is called the *error function* and is defined as:

$\operatorname{erf}(x) =$	$\frac{2}{\pi}$	\int_{x}^{x}	e^{-t}	²dt
	Л,	Jo		

 $\operatorname{erf}(rac{a}{\sigma\sqrt{2}})$ is the probability that a measurement lies between -a and a.

n σ	Area
	(%)
1	68.27
1.645	90.00
1.960	95.00
2	95.45
2.576	99.00
3	99.73
3.290	99.90
4	99.99
5	100.00

True, Expected or Modeled Value

- The resolution of the measurement, RMS or σ , is fixed by the experimental equipment. (and not improved by statistics)
- The measured value and its uncertainty provides a **estimate** for the range of the *true* value. We never **know** what the true value is.

What does statistics buy you?

Repeating a measurement N times will not improve the experimental uncertainty, but it will improve our estimate of the uncertainty and the measured mean.

Ø

For N measurements, the mean, \bar{x} , is determined with the following uncertainty:

1

$$\delta \bar{x} = \frac{\sigma}{\sqrt{N}}$$

And the width, σ or RMS, is determined with uncertainty:

$$\delta\sigma = \frac{\sigma}{\sqrt{2N}}$$

Remember the true value, \mathcal{X} , is most probably \bar{x} , so the more precise \bar{x} is determined the better the determination of \mathcal{X} .

Example: Beam Position

At CEBAF the nominal Beam Position Monitor resolution is quoted at $50 \mu m$. A set of experiments, parity scattering, requires that the beam position for positive spin aligned electrons be within nanometers of the negative spin aligned electrons.

How many measurements of beam position are required to achieve *nm* uncertainty on the average beam position?

$$\delta ar{x} = 10^{-9} m = rac{50 imes 10^{-6} m}{\sqrt{N}}$$
 $N = 2.5 imes 10^{9}$

If measurements are made at 960Hz, how long will it take the to achieve this goal?

$$T(days) = \frac{2.5 \times 10^9}{960} \frac{1}{3600 \times 24} = 30.1 \text{days}$$

Systematic Error vs. Uncertainty

If through some independent method it is determined that the reported measured mean is **not** the most probable value for the true value, \mathcal{X} . Then the measurement is said to have a systematic error.

Combining Uncertainty Terms Uncorrelated Terms

If the measurement is a function of several independent parameters:

$$\bar{x} = \bar{x}(\alpha_1, \alpha_2, \ldots, \alpha_n)$$

The total uncertainty is the *sum of the squares* of the variation (partial derivative) with respect to each independent parameter.

$$\Delta \bar{x} = \sqrt{\sum_{i} (\frac{\partial \bar{x}}{\partial \alpha_i} \Delta \alpha_i)^2}$$

Often working with relative uncertainty is more straight forward:

$$\frac{(\Delta \bar{x})^2}{\bar{x}^2} = \frac{1}{\bar{x}^2} \sum_i (\frac{\partial \bar{x}}{\partial \alpha_i} \Delta \alpha_i)^2$$

Example: Combining Uncorrelated Uncertainties Determining Heat Capacity of W slug

Using thermometry and a heater, what is the expected error on determining the Heat Capacity of the W slug?

$$C_m(Joules/^{\circ}K) = I \cdot V \cdot \delta t / \Delta T$$

$$\frac{\Delta C_m}{C_m} = \sqrt{\left(\frac{\Delta I}{I}\right)^2 + \left(\frac{\Delta V}{V}\right)^2 + \left(\frac{\Delta(\Delta T)}{\Delta T}\right)^2}$$

Quantity	Expected	Uncertainty	Relative		
	Value		Uncer-		
			tainty		
			(%)	_	
ΔT (°K)	10	0.025	0.25		
$I_{\Omega}(A)$	15	0.0135	0.1		
V_{Ω} (V)	75	0.006	0.01	- -	
Total			0.27	-	(

Correlated Uncertainties

What happens to the Central Limit Theorem in the presence of correlation between variables? 100% Correlation between random sets:

Jefferson Lab

How much Correlation does it take?

Combine 12 sets of 100,000 measurements with a fraction of the 100,000 sorted before being added to the total.

Graphical Interpretation of Uncertainty

Plots represents the 68.3% contour, or 1σ , on the probability distribution. Measurement if \bar{x} depends of two variables, α_1 and α_2 .

Uncorrelated

$$\sigma_x^2 \simeq \sigma_u^2 \left(\frac{\partial x}{\partial u}\right)^2 + \sigma_v^2 \left(\frac{\partial x}{\partial v}\right)^2 + 2\sigma_{uv}^2 \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} + \cdots$$

APF JLAB Accelerator Operations

The Particle/Nuclear physicists Approach to Uncertainties/Data Analysis

- Assume everything is Gaussian
- Uncertainties go as \sqrt{N}
- Variables are independent.
 - ► Many statistics/data analysis software libraries and tools are available.
- Non-Gaussian highly correlated situations are handled on a case by case basis starting from first principles.
 - Uncertainties can be estimated by developing problem specific Monte Carlos.
 - Maximum Likelihood Method

This is common measurement on Accelerators. The process is as follows:

- **1** Measure the transverse beam profile, wire scanner (CEBAF) or viewer
- Ochange optics
- repeat steps 1 and 2

Sources of Uncertainty

- Uncertainty in the SEM measurement or PMT count.
- Uncertainty in transverse width
- Uncertainty in the transport matrix from Quad to Wire Scanner (Viewer)

Magnetic field model, negligible? Element location, negligible?

Wire Scanner

Signal Source can be either detecting the SEM off the wire or by detecting the scattered particles with a photomultiplier.

SEM

- Signal level small
- Noise level high
- Width resolution of $\mathcal{O}(10 \mu m)$

PMT

- If PMT in counted mode, \sqrt{N} statistics on each measurement
- Properly configure width resolution can be as low as $\mathcal{O}(1\mu m)$

APF JLAB Accelerator Operations

Jefferson Lab

Secondary Emission Wire Scanner: Typical

- Signal Noise is determined for each harp scan by averaging the signal term at the beginning and end of the data file.
- Peaks are located via pattern recognition software
- RMS deviations are determined (along with their uncertainties) and are used as starting points for a fit to the data.
- Standard Least Square Fit assuming a Gaussian shape is performed.
- Sitted widths and their uncertainties are extracted.

- $\text{RMS}_X = 103 \pm 20 \mu \text{m}$
- $\sigma_{\rm X} = 99.4 \pm 0.3 \mu {
 m m}$
- $\operatorname{RMS}_X = 362 \pm 36 \mu \mathrm{m}$
- $\sigma_{\mathrm{Y}} = 336.4 \pm 2.3 \mu \mathrm{m}$

Secondary Emission Wire Scanner: Noisey

	Wire Scan Dis	play and Analysis Tool, V	ersion 4-5	_ — ×
IHAOLO7 -	INITIATE SCAN	Previous	Next	Most Recent
Filename:	/usr/opdata/profile/IHA0L07.	02132012_17:42		File Select
Information:	WARNING: Noise RMS a bi	t large		
Scan Date:	2012-02-13 17:42	Noise:	22.66	Harp File Header
Empty Field:		Noise RMS:	30.63	
Number of Peaks Found:	3	Number of Peaks Fitted:	3	
× Beam Position(mm)		Y Beam Position(mm)		
Sigma X(mm)	0.0800 +/- 0.0189	Sigma Y(mm)	0.3923 +/- 0.3057	💠 Re-try fit
	×	u	У	Plot All
sigma(mm)	0.0800 +/- 0.0189	0.1682 +/- 0.0789	0.3923 +/- 0.3057	 Y axis linear
Beam Position(mm)				💠 Y axis log
Area	131.06 +/- 5.98	79.89 +/- 7.26	113.09 +/- 15.48	
Signal/Noise	11.7 +/- 0.5	5.5 +/- 0.5	2.4 +/- 0.3	Print To:
Chi-square	19.000	16.000	18.000	mcc104d
RMS Width (mm)	0.071 +/- 0.017	0.150 +/- 0.029	0.240 +/ 0.032	Exit

- $\mathsf{RMS}_X = 71 \pm 17 \mu \mathrm{m}$
- $\sigma_{\rm X}=$ 80 \pm 19 $\mu{
 m m}$
- $RMS_X = 240 \pm 32 \mu m$
- $\sigma_{\rm Y} = 390 \pm 300 \mu {\rm m}$

APF JLAB Accelerator Operations

Photo-multiplier Wire Scanner: \sqrt{N}

	Wire Scan Dis	play and Analysis Tool, Ve	rsion 4-5	_ - ×
IHA2C24	INITIATE SCAN	Previous	Next	Mast Recent
Filename:	/usr/opdata/profile/HallB/ha	rp_tagger_04 10 12_16:13:05.0	bxt	File Select
Information:	Data and fits results availab	le		
Scan Date:	2012-04-10 16:13	Noise:	0.00	Harp File Header
Empty Field:		Noise RMS:	0.00	
Number of Peaks Found:	2	Number of Peaks Fitted:	2	
×Beam Position(mm)	1.562	Y Beam Position(mm)	6.141	
Sigma X(mm)	0.0898 +/- 0.0012	Sigma Y(mm)	0.1282 +/- 0.0014	Re-try fit
	×	У		Plot All
sigma(mm)	0.0898 +/- 0.0012	0.1282 +/ 0.0014		💠 Y axis linear
Beam Position(mm)	1.562	6.141		 Y axis log
Area	1.20 +/- 0.01	1.25 +/- 0.01		
Signal/Noise	6528.1 +/- 50.3	4574.4 +/- 28.7		Print To:
Chi-square	18.000	13.000		mcc104d
RMS Width (mm)	0.098 +/- 0.007	0.128 +/- 0.008		Exit

- $\text{RMS}_X = 98 \pm 7 \mu \text{m}$
- $\sigma_{\rm X} = 89.8 \pm 1.2 \mu {
 m m}$
- $RMS_X = 128 \pm 8 \mu m$
- $\sigma_{\rm Y} = 128.2 \pm 1.4 \mu {\rm m}$

Quad Scan Analysis

- A fit 2^{nd} order polynomial fit to 1/f versus σ^2 is performed.
 - First a straight forward LSF is performed to provide initial seeds to MINUIT.
 - The final results are derived by invoking MINUIT which provides a more complete exploration of the parameter space.
- The fitted parameters with uncertainties, A,B & C, are then used to extract ε, β and α and their uncertainties.

Quad Scan Example

- $\varepsilon = (1.677 \pm 0.012) \times 10^{-9}$ m-rad
- $\beta = 44.50 \pm 0.31$ m
- $\alpha = -6.488 \pm 0.0030$

Why Such a Busy Screen?

- Wire Scanner Results suspect: Remove bad measurements or adjust width errors
- Model suspect: Allow user to adjust Transport Matrix values
- Report intermediate (A,B,C) and final results(ε,...).

Quard Scan Data for INJECTOR Dataset: 201202081033 Adduts X bats Motion X bats Adduts X bats Motion X bats Signe Include: X Signe Include: X Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspan="2				Quad Sca	n Data			
NODELISE Value MODELISE Value MODELISE Value MODELISE Value Science 0.0000005 Value 0.000005 Valu		Quad Scan E	ata for l	NJECT	OR Da	taset: 20)12020	081033
Sca Jonethol State FUT Control State State 0 u onethol 357560+64 20000+06 0.0730 0.0730 0.0731<	AQDOLO	06 X Data MQD0L06 Y E	ata MQD0L07	X Data MG	DOLO7 Y Dat	a		
0 g / ont 33500-64 2000-06 0.213 331.0 1 g / ont 2.3500-64 2000-06 0.2253 331.0 2 g / ont 2.2600-64 1.0000-06 0.239 307.0 3 g / ont 2.2600-64 1.0000-06 0.0395 307.0 4 g / ont 1.2590-64 1.0000-06 0.0395 44.6 5 g / ont 2.2110-64 1.0000-68 0.0355 44.6 5 g / ont 2.2110-64 1.0000-68 0.0355 44.6 6 g / ont 2.2110-64 1.0000-68 0.0355 44.6 8 g / ont 2.2110-64 1.0000-68 0.0355 44.6 9 g / ont 2.2110-64 1.0000-68 0.0355 44.6 9 g / ont 2.3170-64 1.0000-68 0.0355 44.6 9 g / ont 2.2110-64 1.0000-68 0.0355 44.6 9 g / ont 2.2110-64 1.0000-68 0.0355 44.6 9 g / ont 2.21172-21172-21172-2217200531-65 0.0222400359342727 2.227707245534-6 1.23760-6530-1120147300531-65 0.02724003534547344.5 1.2376-6530-1120147300531-65 0.0272400353454707 1.227347055554-6 1.23760-5530-1120147300531-65 0.00179920339140100 1.2119437055554-6 1.23760-5530-1120147300531-65 0.00179920339140101 1.2119437055554-6 1.23760-55301-120147300531-65 0.00179920339140101 1.2119437055554-6 1.23760-55301-120147300531-65 0.00179920339140101 1.2119437055554-6 1.23760-55301-120147000 1.221144395841-443778-00 -2.25858- Mmut Heatists 1.0265 0.1112-1211 4.43958-01 -4.3118-601 4.44778-00 -2.25858- Mmut Heatists 1.0265 0.1112-1211 4.43958-01 -4.3118-601 4.44778-00 -2.25858- Mmut Heatists 1.0265 0.1112-1211 4.43958-01 -4.3118-601 4.44778-00 -2.25858- Mmut Heatists 1.0265 0.1112-1211 4.43958-01 -4.44778-00 -2.25858- Mmut Heatists 1.02667 0.1101 1.01114 1.012 1.0000 0.011 3.02 1.0000 0.011 3.02 1.0000 0.011 3.02 1.0000 0.011 3.02 1.0000 0.011 3.02 1.0000 0.011 3.02 1.0000 0.011 3.02 1.00000 0.011 3.02 1.000000 0.011 3.02 1.00000000 0.011 3.02 1.0000000000000000000000	Scan	Include? S	gma	Error		K1*L	Cont	rol System (gauss
1 g Ontt 3.1550-64 2.0000-06 0.2255 3.310 2 g Ontt 2.2550-64 1.0000-06 0.2300 3.300 3 g Ontt 2.2550-64 1.0000-06 0.2300 3.300 4 g Ontt 1.2550-64 5.0000-06 0.2550 3.900 5 g Ontt 1.2550-64 5.0000-06 0.2300 446.0 7 g Ontt 2.3170-64 1.5000-06 0.0300 446.0 7 g Ontt 2.3170-64 1.5000-06 0.0327 5.97.1 AdScan Row AdS can Row AdS can Row AdS can Row Not Lace Squares Fit Pot Mout Fit Pot Mout Pot Range Hout Sec (PS) 3.0771717220501+66 0.27260253934277 2.27702753044695 Mout Sec (RS) 3.077177122051+65 0.27260253934277 2.27702753044695 Mout Sec (RS) 3.077177122051+65 0.27260253934277 2.27702753044695 Mout Sec (RS) 3.07727122051+6	0	Omit	3.5250e-04	2.	7000e-06	0	.2130	331.665
2 gr (0mt 2,4520+64 1,4000+06 0,2380 300.0 3 gr (0mt 2,2000+64 1,0000+06 0,02380 300.0 4 gr (0mt 1,2520+64 1,0000+07 0,0278 4437 5 gr (0mt 2,2510+64 1,0000+06 0,02387 44437 6 gr (0mt 2,2510+64 1,000+68 0,0387 4443 6 gr (0mt 2,2510+64 1,000+68 0,0387 4443 7 gr (0mt 2,2510+64 2,2500+66 0,0337 4477 8 gr (0mt 2,2510+64 2,2500+66 0,0337 4477 7 gr (0mt 2,2510+64 2,2500+66 0,03257 1,2510+64 1,000+68 0,03257 1,000+68 0,03257 1,2510+64 Mental Pol Range FI Coefficients A B C Mental Pol Range FI Results: Clean Prameters S22244762123477ec5 0,0179253358146261 (2,2735358346469 Mental Results: Clean Prameters S22244762123477ec5 0,0321647 (0,0077992335814660 (2,273563846469 Mental Results: Clean Prameters S276629347142321 (4293940 4,23158,601 (44372±40) 4,236834 Mental Results: Clean Prameters S1706±90 3,03724 (5,3158±901 (44372±40) 4,236834 Mental Results: Clean Prameters S1706±90 3,03724 (5,3158±901 (44372±40) 4,236834 S1706±90 3,03724 (5,324584 (5,3158±901 (44372±40) 4,236834 S1706±90 3,03724 (5,31	1	_ Omit	3.1550e-04	2.	0000e-06	0	2255	351.124
3 g ∪ ontt 2.0000-64 10000-06 0.0305 300. 4 g ∪ ontt 1.2520-64 5.0000-07 0.0275 443.3 5 g ∪ ontt 1.2550-64 1.0000-06 0.0280 446.5 6 g ∪ ontt 2.2110-64 1.0200-06 0.0300 446.5 7 g ∪ ontt 2.2100-64 1.0200-06 0.0302 447.7 8 g ∪ ontt 2.3370-64 1.0300-06 0.0327 497.7 Add San Row Add Sat Row Pot Raw Data (Nr II) Munit Pot Range H Coefficients A B C Pot Manit Pro Range H Coefficients A B C C Munit Sea Row S2202478212307122001+0 6 0.2278203404695+183 1.2313423044695112211 4.3398-01 -4.3186-01 -4.43778-10.7-2.3885-01 Munit Sea Row B C C D C C C C C C C C C C C C C C C C	z	🗆 Omit	2.4520e-04	1/	4000e-06	0	2380	370.678
4 gr (0 mt) 1.2526-64 50000-07 0.2786 4437 5 gr (0 mt) 1.1556-64 1.0000-07 0.2786 4437 6 gr (0 mt) 2.27560-64 1.0000-08 0.2037 4437 7 gr (0 mt) 2.27560-64 2.0000-08 0.3137 4477 8 gr (0 mt) 2.27560-64 2.0000-08 0.3137 4477 8 gr (0 mt) 2.27560-64 2.0000-65 0.3137 4477 9 gr (0 mt) 2.27560-64 2.0000-65 0.3257 5073 Add Scan Row Pot Least Squares RL Pot Menut Fit Pot Menut Pot Range Fit Coefficients A B C Menut Pot Range Fit Coefficients A C Coefficients 1.2215430456846- Menut Pot Range C A 20254804538437277 2.2275807530146869+ Menut Sasz242478212301571-2505611-65 1-0.2226802538437277 2.2275807530146869+ Menut Sasz242478212301571-2505611-65 1-0.2226802538437277 2.2275807530146869+ Menut Sasz242478212301571-2505611-65 1-0.2226802538437277 2.2275807530146869+ Menut Results C B A C C A 202784000 518216-07 (0 001789223089164021 1.2211547365846- Fit Results C B A 17906-09 3.01709 1.21154701 448778-00 r-2.58689+ Munut Fit Results C 17906-09 3.01709 1.21164978-00 r-2.58689+ Munut Fit Results C D Beta B 4078 Munut Fit Results C D Beta C C C C C C C C C C C C C C C C C C C	3	🗆 Omit	2.0880e-04	1.	0000e-06	0	2505	390.138
5 growt 1.6556-64 1.0006-06 0.0281 446.0 6 growt 2.0116-64 1.0006-06 0.0300 446.0 7 growt 2.0306-64 2.0006-06 0.0302 447.7 8 growt 2.0376-64 1.5006-06 0.0327 69.7 Add Scan Row Add Scan Row Mout Least Supares Fit Pot Mault Fit Rowt	4	🗆 Omit	1.2920e-04	5.	0000e+07	0	2756	429.152
6 growt 21110-64 1.2000-06 0.000 4461 2750-06 20000-06 0.0132 4477 8 growt 3.3176-64 1.5000-06 0.3257 5571 Add Scan Row Add Scan Row Pot Raw Data (No Fil) Pot Least Squares Fil Pot Minut Fil Pot Minut File C Manut Hou Ronge Add Scan Row B Add Scan Row In Confficients Add Scan Row B Add Scan Row In Confficients Add Scan Row In Confficients Add Scan Row In Confficients Add Scan Row Manut Hou Ronge C	5	🗆 Omit	1.6590e-04	1.	6000e+06	0	2881	448.706
7 gr ont 27606-54 20000-06 0.313 4477 8 gr ont 3376-54 1.5006-06 0.3257 5671 Add Scan Row Add Scan Row Plot Raw Data (Nr III) Plot Least Spanes Fit Plot Minut Fit Plot Minut Field Range Hour I Plot Range Add Set Defme Minut Flot Range C Hour I Set (Str.) 30/0717712200511-65 -0.27860440151182 12730456304669- Hour I Set (Str.) 30/07177172200511-65 -0.27860440151182 12730456304669- Hour I Set (Str.) 30/071777172200511-65 -0.27860440151182 127304563546- Hour I Set (Rout Point Str.) 30/071792020511-65 -0.27860440151182 127304563546- Hour I Set (Rout Point Str.) 30/071792020511-65 -0.27860440151182 127304563546- Munut Restast 12/058-69 -0.37786440151182 12730477865 -0.27865464 Munut Restast 12/058-69 -0.377864401511842 -0.23865464 -0.27865464 Munut Restast 12/058-69 -0.377864401 -0.2868-64	6	🗆 Omit	2.1118e-84	1.	2000e-06	0	.3006	468.165
B	7	🗆 Omit	2.7630e-04	2.	0000e-06	0	.3132	487.720
Add Scan Row Plot Raw Data (No FR) Plot Least Squares FR Plot Minut Fr Plot Minut From Range Mout For Range Add Sci Define Minut For Range Add Sci Define Minut For Range Nite Coefficients A B C Sci	8	🗆 Omit	3.3170e-04	1.	9000e-06	0	.3257	507.179
Notati Voir Gonge Aults Stel Define Mutal Voir Gonge FIL Coefficients A B C Minut Steed (LSP) 3.0878978171220501+65 0.2278692359347276 2.27707252631645694 Minut Event (LSP) 3.0878978171220501+65 0.22786924519816483 1.2219470558261645694 Minut Event Scatter (LSP) 3.087897817122050121407 0.0001179329305116043 1.22194705659464 Minut Events 1.37056-09 + 0.1102-011 4.4999-011 + 0.1110-01 -5.54566+ Minut FR bands 1.37056-09 + 0.1102-011 4.4999-011 + 0.1110-01 -5.5456+ Minut FR bands 0.0011793293016043 1.23194706595946- -5.5456+ Minut FR bands 0.15726-01 4.4999-01 + 0.1102-01 -5.5456+ Minut FR bands 0.00117932931604 -5.6457+00 + 0.2565+ -5.5456+ Minut FR bands 0.00117932931604 -5.6477+00 + 0.2565+1 -5.5456+ Minut FR bands 0.00117932931604 -5.6477+00 + 0.2565+1 -5.6459+1 Lower 1.6405 1.00 -5.6459+1 -5.6459+1 Lower 1.6405 1.00 -5.16599+1<	PI	lot Raw Data (No Fit)	Plot Least S	quares Fit	Plot M	linuit Fit	Plot M	Ainuit Re-Fit
Montal result, sengle Automatic Design and the sengle FIL Conferious A B C C Minual Seed (LSP) 305/797/71/230501-05 0-22780502305942727 22770725530169629 Minual Tear (LSP) 305/7977/7230521017-05 0-277805401516901690 122194705550169629 Minual Tear (LSP) 2.045926200193221-07 0.000179592039016963 122194705659444257- Minual Tear (LSP) 2.04592620019321-07 0.000179592039016963 122194705659444257- Minual Tear (LSP) 1.7565-09 + 0.1162-01 4.8998-01 + 0.1162-01 -6.4778-00 + 0.2 5985+1 Minual Tear (LSP) 0.1162-01 0.01179922041 -6.4778-00 + 0.2 5985+1 Minual Tear (LSP) 0.01179922041 0.01179922041 -6.4778-00 + 0.2 5985+1 Minual Tear (LSP) 0.0117922041 0.0117922041 -6.4778-00 + 0.2 5985+1 Minual Tear (LSP) 10-00 100 -7.51169-01 -7.51169-01 Upper 10-00 100 -7.51169938+01 -7.51169938+01 -7.51169938+01 Englast Emittance 2.01029726-00 2.1109938+01 -7.51169938+01 -7.		LEWIS Date Dames					0.0.0.1	mult Plat Dames
mic Generatissis n		The Confficients					Denne m	c.
Namet Size2024780121397.005 2775550413918105 17790554093443734425 FIL Results: Dean Parameters 52210240710012310-05 02775921093016040 122118370568406- FIL Results: Dean Parameters 0001779921093016040 122118370568406- 4000 LS7 Results: Dean Parameters 137060-06 33702-00 -52406- Mundl Results 10755-059 112112 43995-01 -64077e-00-/c-25085- Mundl Results 10755-059 111212 143956-01 -64077e-00-/c-25085- Mundl Results 10755-059 11121 1103-00 -64077e-00-/c-25085- Upper 1=012 0.01 1 11021 -64077e-00-/c-25085- Tomsport Mutrix 2.002277e+00 2.160939e-01 -64077e-00-/c-25085- - Expert Entimece 311 312 - - -		Minuit Seed (LSE)	3.0678978171	2300501-0-05	-0.272680	253983472787	2 277507	285280146694-08
matrix 2022/02/17/02/2019/02 0/22/02/02/02/02/02/02/02/02/02/02/02/02		Minut Seeu (LSF)	2 5 2 2 0 2 4 6 7 6 9	21220170.05	0.27200	044961591902	1 720905	446794442570.08
Uncertain Description Description <thdescription< th=""> <thdescription< th=""> <</thdescription<></thdescription<>		Minuit Excercit	2.2845026020	01932210.07	-0.27300	220599166042	1 2210	440754442576-00
LSF Results 1.79500-69 3.6702+601 -5.2486en Manu Results 1.0726+69 +r - 1.672-101 4.4939+01 + .0.3108+01 -6.4577e+00 +r - 2.5635+1 Manu Fit House enternor beta -6.4577e+00 +r - 2.5635+1 Lower 0.112 0.11 -0.112 0.11 Upper 10+0.2 0.11 0.112 0.11 Transport Mutrix 2.802277e+00 Z.168939e+01 Elegast Emittance	Gt D	asulte: Deam Parametere	emitte	nce	0.000117332	ata	1.2010	alnha
Mean Results 1 (2155-09) / 51 (152-211) 4 43956-01 / 4 3 (162-01) -4 43776-00 - /-2 59856-1 Marcu F1 Boards entitication bela		I SF Results		1.7900e-09		36702e+01		-5 2486e+00
Minut Fit Bounds omitance beta Lower 16-b2 0.1 Upper 16-66 100 Transport Matrix 2802277e+00 2.169938e+01 Elegant Emittance 2 2.169938e+01		Minuit Results	1.6765e-09 +/	- 1 1612e-11	4.49996+01	+/- 31168e-01	-6.4877e+	00 +4- 2 9685e-03
Lower 10-12 0.1 Upper 10-00 100 Transport Matrix 2.8022770+00 2.169998+01 Elegist Eentlance 2.0022770+00 2.169998+01		Minuit Fit Bounds	emitta	nce	b	eta		
Upper 1e-60 100 S11 S12 S12 Transport Mutrix 2.002277e+00 2.160999e+01 Elegant Emittance		Lower		1e-12		0.1		
S11 S12 Transport Matrix 2.802277e+00 2.160999e+01 Elegant Einstitance		Upper		1e-08		100		
Transport Matrix 2.802277e+00 2.169999e+01 Elegant Envittance			S11		S	12		
Elegant Emittance		Transport Matrix	2	.802277e+00		2.160999e+01		
		Elegant Emittance						
	-							

APF JLAB Accelerator Operations

The Monte Carlo Method: Uncertainty Estimate for non-Gaussian distributions

- In cases where the $\frac{\partial f(x)}{\partial x}$ is challenging to calculate
- When the distributions are non-Gaussian, distributions with hard edges (min and max for example.)

Given a random distribution of gradients, Qs, r/Q, with hardware limits on Gradient and Qs, what is the expected cryogenic heatload, \mathcal{H} and its uncertainty.

ferson Lab

$$\mathcal{H} \propto \frac{\mathcal{G}^2}{\operatorname{Cavity}_{R/Q}\mathcal{Q}}$$

where \mathcal{G} and the cavity \mathcal{Q} are distributions generated to reflect reality.

APF JLAB Accelerator Operations

Linac Heat Load: Monte Carlo

APF JLAB Accelerator Operations

Maximum Likelihood See Orear CLNS82/511

 $\mathcal{L}(\alpha) = \prod_{i=1}^{N} f(\alpha, x_i)$ The likelihood function is the joint probability density of getting a particular experimental result, x_1, \ldots, x_n , assuming $f(\alpha, x)$ is a normalized distribution function: $\int f(\alpha, x) dx = 1$. Note, normalization is the only requirement on $f(\alpha, x)$. $w \equiv \ln \mathcal{L}(\alpha_1, \ldots, \alpha_M)$ Define w to be the log of the likelihood function for M parameters to be determined. $\frac{\partial w}{\partial \alpha_i}|_{\alpha_i=\alpha_i^*}=0$ Yields values for α_i^* that maximize \mathcal{L} . $\Delta \alpha = (-\frac{\partial^2 w}{\partial \alpha^2})^{-\frac{1}{2}}$ Maximum Likelihood Uncertainty

Numerical Maximum Likelihood

Let's take a set of measurements so that for each x_i we obtain a measured value and uncertainty, $y_i \pm \Delta y_i$. We have a hypothesis that the function $\overline{y}(x)$ represents the data.

Probability Distribution function: If Uncertainties are Gaussian

$$f(y_a, \bar{y}(x_a, \alpha_j, \ldots)) = \frac{1}{\sqrt{2\pi}\sigma_{y_a}} e^{-0.5\frac{(y_a - \bar{y}(x_a))^2}{\sigma_{y_a}^2}}$$

Numerical Maximum Likelihood

Non-Gaussian Uncertainties

In this case $\mathcal{L} = \prod f(y, \overline{y}(x, \alpha))$ is calculated numerically, in other words, represent each f as a normalized histogram and just multiple all the individual histograms together.

Note: that you will also have to step through the parameter space, α 's to form the $\mathcal{L}(\alpha)$ distribution. We have computers!

APF JLAB Accelerator Operations

Numerical Maximum Likelihood

Non-Gaussian parameter and uncertainty

With $\mathcal{L}(\alpha)$ determined numerically, numerically take the log:

 $w(\alpha_i) = \ln \mathcal{L}(\alpha_i)$

One dimensional Case:

- α^{*} is the value of α for which w is a maximum.
- The region that represents 68.3% of the probability distribution is determined by the value of α the corresponds to:

w_{max} — 0.5.

• The left and right uncertainties are often unequal.

APF JLAB Accelerator Operations

When the uncertainty is very large, sometimes it is best to quote that the most probable value is below (or above) some value at the XX% confidence level. The choice of a value for the limit is somewhat arbitrary, although I think these days most people quote 95% CL.

Value α^* has a 95% probability of being less than α^*_{max} .

APF JLAB Accelerator Operations

References: In preferential order

Orear Notes on Statistics for Physicists, Revised, CLNS 82/511 This is a concise, complete, concrete text that explains statistics and uncertainties all derived within a Maximum Likelihood framework. It contains very informative examples.

- Hoffmann Measurement, statistics, and errors CAS2008 pg: 157-177. Concise treatment of noise terms.
 - James MINUIT Manual, Function Minimization and Error Analysis, FORTRAN and C++ implementations, with wrappers for JAVA, Python, Perl.
- Bevington Data Reduction and Error Analysis for The Physical Sciences, McGraw-Hill Companies; 1992 ISBN-10: 0079112439, ISBN-13: 978-0079112439
- Box et al. Statistics for Experiments Wiley-Interscience; 2 edition (May 31, 2005) ISBN-10: 0471718130 ISBN-13: 978-0471718130
 - Caria Measurement Analysis World Scientific Publishing Company (March 2001) ISBN-10: 1860942318 ISBN-13: 978-1860942310

No one owns the truth!

Model calculations/simulations have uncertainties, just as well as physical measurements.

Much beam time has been spent trying to reconcile measurement & prediction only to find that it was the model that was wrong!

Three parameters define a measurement

- **(**) Most probable value: α^*
- 2 The 68.3% uncertainty bounds: $\pm\Deltalpha$
- 🗿 The unit

An honest comparison between model/theory and measurement cannot take place unless **all** uncertainties, measurement and model, are accounted for.

Everything is Gaussian!! See Central Limit Theorem.

Life is a probability distribution, with a very high probability of being a Gaussian distribution.

- Uncertainty determination starts at the signal source.
- Care must be taken with regard to error propagation from the source to the final result in order to arrive with the correct value for the uncertainty.
 - ▶ It is easier to determine α^* , than it is to determine $\Delta \alpha$. (Which is why the uncertainty is often not presented).
- Standard software libraries and applications, old and new, are available to handle standard cases. Trust but verify!
- When in doubt or lazy invoke MINUIT to do the work for you.
- If necessary, resort to first principles and write down or numerically determine *L*.

APF JLAB Accelerator Operations

