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Measurement Overload

An accelerator is an overwhelming source of measurements:

Beam position, size, energy, intensity, bunch length, energy spread,
polarization

RF systems gradient, frequency, phase, cathode current

Cryogenics Pressure, �ow, temperature, valve location

Magnets Current, Voltage, Temperature, LCW �ow

Vacuum Pressure, particle species

. . . . . .

Understanding the uncertainty (or error) in these measurements is vital in
the correct interpretation of the measurement/system.
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Measurement Uncertainty

Every measurement has uncertainty. This is sometimes referred to as the
instrumental uncertainty and its value is inherent to the device, This
de�nes the precision of the device.

Bit Resolution 8bit ADC, 8bits = 256, 5V/256bits = 0.02V/bit

Circuit Noise Electronic noise sources (
√
4kT · R · B thermal noise, shot

noise, �icker noise) that limit the precision of the
measurement.

Scale Resolution Old school this meant the graduations on the scale. In
the digital age, this refers to the signi�cant digits promoted
to the User Interface or stored in the archiver. Often these
are truncated to reserve space at a loss of precision.

. . . . . .
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Uncertainties

In general the uncertainty estimate should strive to equate to the root
mean square (RMS)† deviation of an in�nite set of measurements. A
measurement (the mean) and its uncertainty (RMS) is usually denoted as:

x ±∆x

For a set of measurements (x1, x2, . . . , n),

x = x̄ =
1

n

∑
xi

∆x = RMS =

√
1

n − 1

∑
(xi − x̄)2

Note that these equations hold for all types of distributions.
† Throughout this talk RMS refers to the root mean standard deviation.
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Probability Distributions

If the uncertainty of a measurement is de�ned as the RMS of a set of
measurements (or its equivalent), then the uncertainty for a probability
distribution is straight forward to determine via the analog continuous
de�nitions:

µ =

∞∫
−∞

xP(x)dx

σ2 =

∞∫
−∞

(x − µ)2P(x)dx =

∞∫
−∞

x2P(x)dx − µ2

For the record:

1 =

∞∫
−∞

P(x)dx
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The Gaussian Distribution Function

The most useful or common distribution is the Gaussian probability
distribution:

P(x) =
1

σ
√
2π

e−0.5( x−µ
σ

)2

where, x̄ = µ and RMS = σ.

Using the Gaussian distribution as a guide, an alternative de�nition of
the uncertainty can be made:

∆x de�nes a region such that the true value, X has the probability of
residing in the range:

(x̄ −∆x)) < X < (x̄ + ∆x) of 68.3%

With the most probable value for X being x̄ .
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Central Limit Theorem

The sum of independent random numbers (of any distribution) becomes
Gaussian distributed as N →∞
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Everything is Gaussian

Integrating the Gaussian distribution over a limited range is best done
numerically. Luckily these days this is a built in function in most
spreadsheets and numerical libraries. The function is called the error
function and is de�ned as:

erf(x) =
2

π

∫ x

0

e−t
2
dt

erf( a

σ
√
2

) is the probability that a

measurement lies between −a and a.

nσ Area
(%)

1 68.27
1.645 90.00
1.960 95.00
2 95.45
2.576 99.00
3 99.73
3.290 99.90
4 99.99
5 100.00
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True, Expected or Modeled Value

The resolution of the measurement, RMS or σ, is �xed by the
experimental equipment. (and not improved by statistics)

The measured value and its uncertainty provides a estimate for the
range of the true value. We never know what the true value is.



What does statistics buy you?

Repeating a measurement N times will not improve the experimental
uncertainty, but it will improve our estimate of the uncertainty and the
measured mean.
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Mean and Width Uncertainty

For N measurements, the mean, x̄ , is determined with the following
uncertainty:

δx̄ =
σ√
N

And the width, σ or RMS, is determined with uncertainty:

δσ =
σ√
2N

Remember the true value, X , is most probably x̄ , so the more precise x̄ is
determined the better the determination of X .
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Example: Beam Position

At CEBAF the nominal Beam Position Monitor resolution is quoted at
50µm. A set of experiments, parity scattering, requires that the beam
position for positive spin aligned electrons be within nanometers of the
negative spin aligned electrons.

How many measurements of beam position are required to achieve
nm uncertainty on the average beam position?

δx̄ = 10−9m =
50× 10−6m√

N

N = 2.5× 109

If measurements are made at 960Hz, how long will it take the to achieve
this goal?

T (days) =
2.5× 109

960

1

3600× 24
= 30.1days
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Systematic Error vs. Uncertainty

If through some independent method it is determined that the reported
measured mean is not the most probable value for the true value, X . Then
the measurement is said to have a systematic error.
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Combining Uncertainty Terms
Uncorrelated Terms

If the measurement is a function of several independent parameters:

x̄ = x̄(α1, α2, . . . , αn)

The total uncertainty is the sum of the squares of the variation (partial
derivative) with respect to each independent parameter.

∆x̄ =

√∑
i

(
∂x̄

∂αi
∆αi )2

Often working with relative uncertainty is more straight forward:

(∆x̄)2

x̄2
=

1

x̄2

∑
i

(
∂x̄

∂αi
∆αi )

2
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Example: Combining Uncorrelated Uncertainties
Determining Heat Capacity of W slug

Using thermometry and a heater, what is the expected error on determining
the Heat Capacity of the W slug?

Cm(Joules/◦K ) = I · V · δt/∆T

∆Cm

Cm
=

√
(

∆I

I
)2 + (

∆V

V
)2 + (

∆(∆T )

∆T
)2

Quantity Expected

Value

Uncertainty Relative

Uncer-

tainty

(%)

∆T (◦K) 10 0.025 0.25

IΩ (A) 15 0.0135 0.1

VΩ (V) 75 0.006 0.01

Total 0.27

T

W



Correlated Uncertainties

What happens to the Central Limit Theorem in the presence of correlation
between variables? 100% Correlation between random sets:
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How much Correlation does it take?

Combine 12 sets of 100,000 measurements with a fraction of the 100,000
sorted before being added to the total.
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Graphical Interpretation of Uncertainty

Plots represents the 68.3% contour, or 1σ, on the probability distribution.
Measurement if x̄ depends of two variables, α1 and α2.

Uncorrelated

α2*
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σ2x ' σ2u(
∂x

∂u
)2 + σ2v (

∂x

∂v
)2 + 2σ2uv

∂x

∂u

∂x

∂v
+ · · ·
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The Particle/Nuclear physicists Approach to
Uncertainties/Data Analysis

Assume everything is Gaussian

Uncertainties go as
√
N

Variables are independent.
I Many statistics/data analysis software libraries and tools are available.

Non-Gaussian highly correlated situations are handled on a case by
case basis starting from �rst principles.

I Uncertainties can be estimated by developing problem speci�c Monte
Carlos.

I Maximum Likelihood Method
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TWISS Parameter measurement: Quad Scan

This is common measurement on Accelerators. The process is as follows:

1 Measure the transverse beam pro�le, wire scanner (CEBAF) or viewer

2 Change optics

3 repeat steps 1 and 2

Sources of Uncertainty

Uncertainty in the SEM measurement or PMT count.

Uncertainty in transverse width

Uncertainty in the transport matrix from Quad to Wire Scanner
(Viewer)

I Magnetic �eld model, negligible?
I Element location, negligible?
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Wire Scanner

Signal Source can be either detecting
the SEM o� the wire or by detecting
the scattered particles with a
photomultiplier.

SEM

Signal level small

Noise level high

Width resolution of O(10µm)

PMT

If PMT in counted mode,
√
N

statistics on each measurement

Properly con�gure width
resolution can be as low as
O(1µm)
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Secondary Emission Wire Scanner: Typical

1 Signal Noise is determined for each harp scan by averaging the signal
term at the beginning and end of the data �le.

2 Peaks are located via pattern recognition software
3 RMS deviations are determined (along with their uncertainties) and

are used as starting points for a �t to the data.
4 Standard Least Square Fit assuming a Gaussian shape is performed.
5 Fitted widths and their uncertainties are extracted.

RMSX = 103± 20µm

σX = 99.4± 0.3µm

RMSX = 362± 36µm

σY = 336.4± 2.3µm
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Secondary Emission Wire Scanner: Noisey

RMSX = 71± 17µm

σX = 80± 19µm

RMSX = 240± 32µm

σY = 390± 300µm
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Photo-multiplier Wire Scanner:
√
N

RMSX = 98± 7µm

σX = 89.8± 1.2µm

RMSX = 128± 8µm

σY = 128.2± 1.4µm
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Quad Scan Analysis

A �t 2nd order polynomial �t to
1/f versus σ2 is performed.

I First a straight forward LSF is
performed to provide initial
seeds to MINUIT.

I The �nal results are derived
by invoking MINUIT which
provides a more complete
exploration of the parameter
space.

The �tted parameters with
uncertainties, A,B & C, are then
used to extract ε, β and α and
their uncertainties.
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Quad Scan Example

ε = (1.677± 0.012)× 10−9

m-rad

β = 44.50± 0.31 m

α = −6.488± 0.0030

Why Such a Busy Screen?

1 Wire Scanner Results
suspect: Remove bad
measurements or adjust
width errors

2 Model suspect: Allow user to
adjust Transport Matrix
values

3 Report intermediate (A,B,C)
and �nal results(ε, . . .).
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The Monte Carlo Method: Uncertainty Estimate
for non-Gaussian distributions

In cases where the ∂f (x)
∂x is challenging to calculate

When the distributions are non-Gaussian, distributions with hard edges
(min and max for example.)

Given a random distribution of gradients, Qs, r/Q, with hardware limits on
Gradient and Qs, what is the expected cryogenic heatload, H and its
uncertainty.

H ∝ G2

CavityR/QQ

where G and the cavity Q are
distributions generated to re�ect
reality.
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Linac Heat Load: Monte Carlo
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Maximum Likelihood
See Orear CLNS82/511

L(α) =
N∏
i=1

f (α, xi ) The likelihood function is the joint probability

density of getting a particular experimental result,
x1, . . . , xn, assuming f (α, x) is a normalized
distribution function:

∫
f (α, x)dx = 1. Note,

normalization is the only requirement on f (α, x).

w ≡ lnL(α1, . . . , αM) De�ne w to be the log of the likelihood function for
M parameters to be determined.

∂w
∂αi
|αi=α

∗
i

= 0 Yields values for α∗i that maximize L.

∆α = (−∂2w
∂α2

)−
1
2 Maximum Likelihood Uncertainty
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Numerical Maximum Likelihood

X

Y

x_4 x_5x_0 x_1 x_2 x_3

Let's take a set of measurements so
that for each xi we obtain a measured
value and uncertainty, yi ±∆yi . We
have a hypothesis that the function
ȳ(x) represents the data.

Probability Distribution function: If Uncertainties are Gaussian

f (ya, ȳ(xa, αj , . . .)) =
1√

2πσya
e
−0.5 (ya−ȳ(xa))2

σ2ya
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Numerical Maximum Likelihood
Non-Gaussian Uncertainties

Probability Density Function Shape can be arbitrary
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∏

f (y , ȳ(x , α)) is calculated numerically, in other words,
represent each f as a normalized histogram and just multiple all the
individual histograms together.

Note: that you will also have to step through the parameter space, α's to
form the L(α) distribution. We have computers!
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Numerical Maximum Likelihood
Non-Gaussian parameter and uncertainty

With L(α) determined numerically, numerically take the log:

w(αi ) = lnL(αi )

One dimensional Case:

α∗ α

w

wmax

wmax − 0.5

∆αL ∆αR

α∗ is the value of α for which w

is a maximum.

The region that represents
68.3% of the probability
distribution is determined by the
value of α the corresponds to:
wmax − 0.5.

The left and right uncertainties
are often unequal.

APF JLAB Accelerator Operations BIW2012 April17, 2012 33 / 37



A comment on Upper/Lower Limits

When the uncertainty is very large, sometimes it is best to quote that the
most probable value is below (or above) some value at the XX% con�dence
level. The choice of a value for the limit is somewhat arbitrary, although I
think these days most people quote 95% CL.

How to determine an Upper (or Lower) limit

α∗max α

L
Pick the con�dence level you wish to
quote, i.e. 95%

Find the limit of integration, UL, such

that:
UL∫
−∞
L(α)dα = 0.95

Value α∗ has a 95% probability of being less than α∗max .
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Orear Notes on Statistics for Physicists, Revised, CLNS 82/511
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Ho�mann Measurement, statistics, and errors CAS2008 pg: 157-177.
Concise treatment of noise terms.
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JAVA, Python, Perl.

Bevington Data Reduction and Error Analysis for The Physical Sciences,
McGraw-Hill Companies; 1992 ISBN-10: 0079112439,
ISBN-13: 978-0079112439

Box et al. Statistics for Experiments Wiley-Interscience; 2 edition (May
31, 2005) ISBN-10: 0471718130 ISBN-13: 978-0471718130

Caria Measurement Analysis World Scienti�c Publishing Company
(March 2001) ISBN-10: 1860942318 ISBN-13:
978-1860942310
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http://www.amazon.com/Measurement-Analysis-Introduction-Statistical-Laboratory/dp/1860942318/ref=sr_1_1?ie=UTF8&qid=1334415041&sr=8-1


Sandbox Summary

No one owns the truth!

Model calculations/simulations have uncertainties, just as well as physical
measurements.
Much beam time has been spent trying to reconcile measurement &
prediction only to �nd that it was the model that was wrong!

Three parameters de�ne a measurement

1 Most probable value: α∗

2 The 68.3% uncertainty bounds: ±∆α

3 The unit

An honest comparison between model/theory and measurement cannot take
place unless all uncertainties, measurement and model, are accounted for.
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The Other Summary

Everything is Gaussian!! See Central Limit Theorem.

Life is a probability distribution, with a very high probability of being a
Gaussian distribution.

Uncertainty determination starts at the signal source.

Care must be taken with regard to error propagation from the source
to the �nal result in order to arrive with the correct value for the
uncertainty.

I It is easier to determine α∗, than it is to determine ∆α. (Which is why
the uncertainty is often not presented).

Standard software libraries and applications, old and new, are available
to handle standard cases. Trust but verify!

When in doubt or lazy invoke MINUIT to do the work for you.

If necessary, resort to �rst principles and write down or numerically
determine L.
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