
FPGA Based Digital Signal
Processing – Applications &
Techniques

FPGA Based Digital Signal
Processing – Applications &
Techniques

Nathan Eddy
Fermilab
BIW12 Tutorial



Outline

 Digital Signal Processing Basics

 Modern FPGA Overview

 Instrumentation Examples

FermilabBIW 12 Nathan Eddy

 Digital Signal Processing Basics

 Modern FPGA Overview

 Instrumentation Examples



Advantages of Digital Signal
Processing (DSP)
 NO DRIFT – due to temperature or age
 ACCURACY – defined by number of bits
 PREDICTABILITY – from simulation
 PERFORMANCE
 Linear Phase Response possible
 Adaptability in terms of resources

 PRODUCTION – identical units, no tuning
 FLEXIBILITY – via firmware modifications
 DYNAMIC RANGE
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For Beam Instrumentation
 Need to work with analog input signals
 Beam pickups, Schottky detectors, Torroids,

etc
 Requires Analog to Digital Converters (ADCs)

 Need to produce analog output signals
 To act on the beam – RF, kick signals, etc
 Require Digital to Analog Converters (DACs)

 The effectiveness of FPGA solutions is largely
dominated by the performance of the converters

FermilabBIW 12

 Need to work with analog input signals
 Beam pickups, Schottky detectors, Torroids,

etc
 Requires Analog to Digital Converters (ADCs)

 Need to produce analog output signals
 To act on the beam – RF, kick signals, etc
 Require Digital to Analog Converters (DACs)

 The effectiveness of FPGA solutions is largely
dominated by the performance of the converters

Nathan Eddy



Practical Limitations of Sampling

 Common sources of sampling error
 Aliasing
 Quantization
 Sample Clock Jitter

 Can be characterized by their impact on the
Signal to Noise Ratio (SNR) of the sampled
signal
 SNR ~ log(Sa/Na)
 Typically expressed in decibels (db)

FermilabBIW 12

 Common sources of sampling error
 Aliasing
 Quantization
 Sample Clock Jitter

 Can be characterized by their impact on the
Signal to Noise Ratio (SNR) of the sampled
signal
 SNR ~ log(Sa/Na)
 Typically expressed in decibels (db)

Nathan Eddy



Discrete Time Sampling
 Si = S(t)* ’(t) where ’(t) = (t-nT)

 The sequence Si is the sampled version of S(t)
 The sampling frequency Fs is 1/T
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Sampling Theorem
 For ideal reconstruction Fs > 2B where B is

the highest frequency in the signal of interest

 Sampling ambiguity
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Aliasing
 Signals at frequencies larger Fs/2 than will

“alias” into the first Nyquist band

 Undersampling makes use of this effect
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Quantization
 Results in signal noise

 SNRdb = 1.76 + 6.02N, N=number of bits
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Oversampling Improves SNR

 Gain SNRdb = 10log(R) where R=Fs/2B
 Fs is the sampling Frequency
 B is signal bandwidth

 Also relaxes the requirements on the anti-
aliasing analog filter

FermilabBIW 12

 Gain SNRdb = 10log(R) where R=Fs/2B
 Fs is the sampling Frequency
 B is signal bandwidth

 Also relaxes the requirements on the anti-
aliasing analog filter

Nathan Eddy



 Another source of signal noise
 Proportional to maximum signal frequency, fmax

 RMS sampling clock jitter, Ta

 SNRdb = 20log(1/(2 fmaxTa))
 A significant effect for undersampling

applications

Sampling Clock Jitter
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Theoretical SNR Comparison
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The Z domain

 A sampled sequence, x(n) can be
represented

 Where z-1 is the unit delay related to the
sample period (T)

 X(z) is the z-transform of x(n)

X(z) = x(n)z-n∞
n=0
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Difference Eq & Transfer Function

 A constant coefficient difference equation is a recursive
relationship where-by the output of a discrete time
system can be calculated using a combination of past
output values and past and present input values

 Gives z-domain transfer function, H(z)

 Digital filters are specified by a,b coefficients

aky[n-k]  = bkx[n-k]
N

k=0

M

k=0

FermilabBIW 12

 A constant coefficient difference equation is a recursive
relationship where-by the output of a discrete time
system can be calculated using a combination of past
output values and past and present input values

 Gives z-domain transfer function, H(z)

 Digital filters are specified by a,b coefficients

Nathan Eddy

aky[n-k]  = bkx[n-k]

bkz-k

akz-k

Y(z)
X(z)

H(z)  = =

N

k=0

M

k=0

M

k=0

N

k=0



Infinite Impulse Response (IIR) Filter

 Feedback provides
infinite impulse
response
 an non-zero for n≥1

 Properties
 Very efficient
 Non-linear Phase
 Can be unstable
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Finite Impulse Response (FIR) Filter

 Nth Order FIR filter

 Just the feedforward block
 a0=1, all others zero

 Has linear phase if coefficients are symmetric
 That is {b0,…,bN} = {bN,…,b0}
 No analog equivalent
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Cascade Integrating Comb (CIC) Filter

 For an Nth Order CIC Filter, the transfer function is

 Equivalent to N FIR filters with unit coefficients -> symmetric
 Linear Phase even though it has infinite response filter sections

 Used as very efficient way to filter and change rate
 Can be used as Interpolation filter by reversing I & C sections

Integrator
H(z) = 1/(1+z-1)

Comb Filter
H(z) = 1-z-RM
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H(z) =                   = ( z-k)N(1-z-RM)N

(1+z-1)N
RM-1

k=0



Quadrature Signals, I & Q

 Complex signal representation

 In-Phase (real)  & Quadrature (imaginary)
 I(t) = A(t)cos(φ(t))
 Q(t) = A(t)sin(φ(t))

Real

Imag

A(t)
φ(t)

Q(t)

I(t)
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Digital Down-Conversion

 Multiply a signal X by sin(2 f) & cos(2 f) where f is the
the down-conversion frequency
 Shifts the spectral components of X down in frequency by f

 Commonly followed by decimating low pass filter
 Remove sum frequency components
 Process narrow bandwidth signals at lower rate in baseband

X

X

I = Xcos(2 f)

Q = Xsin(2 f)

cos(2 f)

sin(2 f)
Signal X
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Discrete Fourier Transform (DFT)

 Discrete Fourier Transform of length N

 X(k) determines the complex signal
contribution of the frequency in the
composition of x(n)

 Phase or direction (forward, inverse) given by
the sign of the imaginary term

X(k) = x(n) [cos(2 nk/N) +isin(2 nk/N)]
N-1

n=0
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Fast Fourier Transform (FFT)
 Works as a bank of band-pass filters
 The output magnitude from each filter is proportional

to the input energy in each band
 An N point DFT requires N2 operations
 Can compute the N point DFT as two N/2 point

DFTs
 Extrapolate to the limit where N is a power of 2 for an

N point FFT
 An N point FFT requires N/2log2(N) operations
 Note, FFT are almost always implemented as a

power of 2 but can be any prime factor
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FPGA Advantages for DSP
 Parallel processing power (Speed)
 Able to consume large quantities of data
 Alleviate bandwidth bottlenecks in front-ends

 Pipeline architecture
 Efficient digital filter implementation
 Perform operations under strict timing (latency) control

 Dedicated DSP (multiplier) blocks
 Flexibility
 Clocking synchronous with accelerator
 Easy integration with ADCs and DACs
 Easy to modify algorithms and functionality
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High End FPGA Architecture
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Flexible I/O Options

 Dedicated hardware support for almost all
standard I/O protocols

 Transceivers with equalization for fast
differential serial I/O
 PCI Express, RapidIO, etc
 Support for over 20GBps links!

 External memory interface support
 DDR, DDR2, DDR3

 Speed and quantity of available I/O -> $$
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Clock Domains and Distribution
Networks
 Multiple PLLs and DLLs for sophisticated clock management

 Support for run-time reconfiguration
 Fractional PLLs for arbitrary clock synthesis

 Dedicated global and regional clock distribution networks
 Support high rate synchronous design
 Support parallel & pipelined design
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Up to 16
Global Clocks

Up to 23 Regional
Clocks per Quadrant



Synchronous Design - Pipelining

 Reliable designs require synchronous design
principles
 Increase speed and bandwidth
 Trade resources and latency

 Simple Delay Pipeline
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 Based upon dedicated multiplier blocks

 Provide efficient flexibility and power
 Fully customize, dedicated support for FIRs, FFT, etc to optimize

for speed and efficiency

 Modern blocks provide capability for 32 or 64 bit floating
point operations

Digital Signal Processing (DSP) Blocks
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 2s Complement N Bit representation

 Positive numbers just simple binary representation
 Negative numbers are binary number that when added to a

positive number of the same magnitude equals zero

 Convenient Properties
 Simple arithmetic – addition & subtraction the same

Integer Representation

(N-1) Integer BitsSign
Bit

0N-1

2N-2 20
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2N-1-1

-2N-1

-1 = IBs all 1
-2N = IBs all 0



Fixed Point Signal Processing

 Bit widths double on each multiply!
 Need to control bit widths for efficient resource use

 Truncation or Rounding
 Saturation or Roll-over

 Fixed Point N Bit Representation

 Can facilitate keeping track of bit widths
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Integer BitsSign
Bit Fractional Bits

0N-1 M

2-1 2-M



Floating Point Representation
 IEEE-754 Standard Followed

 32 bit – Single Precision
 8 bit Exponent & 23 bit Mantissa

 64 bit – Double Precision
 11 bit Exponent & 52 bit Mantissa

 Single-Extended Precision
 Exponent and Mantissa widths are not fixed
 Minimum 11 Exponent Bits (Exponent<Mantissa)
 Minimum 31Mantissa Bits
 Total Bits at least 43 up to 64

ExponentSign
Bit Mantissa
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Running Average Example
 Can implement an N sample running average as

an FIR with N taps with coefficients of 1/N

 Can be efficiently implemented using two
accumulators and a delay line
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x[n] z-N Acc

Acc
- /N y[n]



Intellectual Property (IP) Cores
 Functional cores which can be used to

greatly speed up and simplify the design
process

 Each FPGA manufacturer provides cores for
all basic components
 PLLs, RAM, FIFOs, Flip-Flops, etc
 Accumulators, Add, Sub, Multiply, Divide, etc
 Take advantage of chip resources

 Advanced cores available for almost any task
 Simple implementation via GUI parametrization

FermilabBIW 12

 Functional cores which can be used to
greatly speed up and simplify the design
process

 Each FPGA manufacturer provides cores for
all basic components
 PLLs, RAM, FIFOs, Flip-Flops, etc
 Accumulators, Add, Sub, Multiply, Divide, etc
 Take advantage of chip resources

 Advanced cores available for almost any task
 Simple implementation via GUI parametrization

Nathan Eddy



Embedded Systems

 Hard Core Embedded processor
is a dedicated physical
component of the chip, separate
from the programmable logic
 2-4 times faster than Soft Core
 More efficient if you need a

processor
 Soft Core Embedded processor

is built out of the programmable
logic on the chip
 A 32 bit RISC processor uses

about few percent of total
resources

 Have option to re-allocate
resources if processor not
needed

Hard Core Resource Allocation
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 More efficient if you need a

processor
 Soft Core Embedded processor

is built out of the programmable
logic on the chip
 A 32 bit RISC processor uses

about few percent of total
resources

 Have option to re-allocate
resources if processor not
needed

Soft Core Resource Allocation



System On a Programmable Chip
(SOPC)
 A wide variety of design tools and options

available
 Pure HDL entry – still possible

 Focus upon developing System On a
Programmable Chip
 Aim to simplify the design process as chip

architectures become more complicated
 Tightly couple design and simulation at all

levels
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Fermilab Booster Digital Damper
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Digital Damper Board

4 DACs
DDR

SoDIMM
Big

FPGA
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4 ADCs

Big
FPGA



Firmware Overview
84 FIRs

In parallel
Beam
Pos

Beam
Kick
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 Design operates synchronous with Booster RF sweeping
from 37MHz to 53MHz

 Provides bucket by bucket damping on all 84 Booster
bunches
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ADC Input clocked at 4*RF

ADC

RF Ref
PLL

LVDS
RX FIFO

4RF

4RF’ RF’

RF
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 ADC clock is shifted to provide ideal sampling
 FIFO used to shift data from ADC clock to

internal clock

Nathan Eddy

LVDS
RX FIFO



RF Reference PLL

 Use one of the Enhanced PLLs
 Dedicated clock pin for RF Reference
 Directly connected to clock output pins for each

ADC clock
 Real-time reconfigurability
 Use to adjust phase of ADC clock in 15º

increments (~200ps @ 50Mhz)
 Instantiated with parametrized IP
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PLL Instantiation
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PLL Instantiation
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LVDS Receiver

 Instantiated with parametrized IP
 Able to take full advantage of built in RX

blocks
 Dynamic Phase Alignment circuitry
 Automatically de-serialize data from 4*RF rate

to 4 time multi-plexed samples at RF rate
 No need to worry about timing constraints!

FermilabBIW 12

 Instantiated with parametrized IP
 Able to take full advantage of built in RX

blocks
 Dynamic Phase Alignment circuitry
 Automatically de-serialize data from 4*RF rate

to 4 time multi-plexed samples at RF rate
 No need to worry about timing constraints!

Nathan Eddy



LVDS Receiver IP
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LVDS Receiver IP
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LVDS Receiver IP
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Programmable Delay
 Dual-port RAM to provide programmable delay

 Offset read & write pointer to requested delay value
 Reset Read Counter to zero when Write Counter = Delay-1

 Maximum delay set by the depth of the RAM

Write
Counter

Clock
Data Clock

FermilabBIW 12 Nathan Eddy

Dual-port
RAM

Write
Counter

Clock

WrAddr

WrData

Read
Counter

RdAddr
RdData

Data In

Data Out



Handling Frequency Sweep

 Digital Portion of design is operating locked to
the Booster RF and sweeps along with it

 Need to adjust output delay to account for fixed
input/output cable & amplifier delays

 Use lookup table to specify output delay
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Look-up
Table
RAM

Turn
Counter Delay Out

Clock

Turn Marker
Enable



Implementation of “Fine” Delay

 Filter produces kick for each RF bucket
 Operate DAC at 12*RF clock rate

 Can shift data fed to LVDS Transmitter to
provide RF/12 delay resolution

Kick @RF Kick @12*RF
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Latch
12

Kick @RF
LVDS

TX

Kick @12*RF

To DAC



Tune Measurement

 Excite single bunch with noise via the damper
 User programmable excitation, noise or anti-damping
 Can vary gain and duration of excitation at each measurement point

 Simple State Machine to Control Measurement
 Up to 64 measurements at selectable time (turn) within the machine cycle
 Select bunch position to pass to FFT engine

 Measure response of single bunch over 128 turns
 Instantiate fixed point FFT using commercial IP

128 Turn
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Tune Measurement
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8 Channel 125MS/s Digitizer
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Digital BPM Receiver Firmware
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Narrowband (Closed Orbit) Filter

Beam
Calib

FermilabBIW 12

 Digital Down Converter (DDC) Section
 32 separate filter paths simultaneously
 8 channels, I&Q, 2 frequencies (beam, calibration)

 CIC filters operating in parallel at 71MHz
 Serial FIR filter at 4.2KHz
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Numerically Controlled Oscillator
(NCO) IP
 Generate Sin & Cos signals at requested

frequency
 Frequency Output = FCLKPhi/2N

 Frequency Resolution = FCLK/2N
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NCO IP
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DDC Quantization Error

 Will always have a slight offset between the
NCO frequency and the beam frequency

 Easy solution is to offset the NCO frequency
to get an integer number of periods in the
averaging window
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CIC Filter  IP

FermilabBIW 12

 Commercial IP allows for single instantiation for all 32
CIC filters needed
 Provides standard serial data output which can be directly

interfaced to serial FIR filter
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FIR Filter IP

FermilabBIW 12

 Provides simple filter design tool or ability to import filter
coefficients

 Option to allow modification of coefficients
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System Integration Tools
 Streamline system integration and design

 Connect standard interfaces
 Internal memory, external memory, configuration devices,  etc

 Connect custom interfaces
 Easy CPU integration
 Handles addressing & interrupts
 Even generates drivers for system components!

 Use well defined interfaces
 Generates all logic for system interconnects!
 Handles all the timing - clock domains, multiplexing, etc
 Built in error checking at compile time

 Facilitates implementing re-usable HDL blocks and
group design methodologies
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System Integration Tool Example
System Clocks

Design
Comps
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System Integration Tool Example
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Summary - the FPGA Pitch
 Sure things…

 FPGA are now the acknowledged leader of cutting edge fast DSP
applications where speed and flexibility are needed

 Accelerator Control and Instrumentation is already using FPGAs to
implement fast online applications, especially feedback & control

 The size, speed, and feature sets continue to grow by leaps and bounds
 Today’s mid level chips are offering features only available in high end chips

just a few years ago at a fraction of the cost
 Design tools are getting closer to traditional programming and becoming

easier to use
 Looks promising…

 Use of FPGA’s to implement online orbit measurements and optic
calcuations which could be used for realtime feedback

 The next step is cluster and mesh architectures using FPGAs to further
increase the processing power

 It could happen..
 FPGA based co-processors for dedicated calculations
 FPGA based super computers which configure their hardware to optimize

the performance for the algorithms being used
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Thanks for Your Attention!
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