

Electron Beam Longitudinal Diagnostics for FERMI@Elettra FEL M. Veronese on behalf of the FERMI diagnostics, timing and commissioning teams

Work partially supported by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3

Outline

- FERMI@Elettra FEL project
 - FEL parameters
 - Science goals

FERMI overview

- Layout
- Machine subsections

• Electron beam longitudinal diagnostics

- Cherenkov + Hamamatsu FESCA200 Streak camera
- Coherent bunch length monitors (CBLM)
- Bunch Arrival Monitor (BAM)
- Low energy RF deflector (LERFD)
- High Energy RF deflector (HERFD)
- Electro Optical Sampling stations (EOS)
- Seed Bunching monitor

• FEL experimental results at FERMI

- Transverse Coherence, bandwidth properties
- Energy/pulse, stability, optimization

FERMI main features

FERMI@Elettra single-pass FEL user-facility. Two separate FEL amplifiers will cover the spectral range from 100 nm (12 eV) to 4 nm (310 eV).

The two FEL's will provide users with ~100fs photon pulses with unique characteristics.

- high peak power
- □ <u>short temporal structure</u>
- □ tunable wavelength
- □ <u>variable polarization</u>
- □ <u>seeded harmonic cascade</u>

0.3 – 1 GW's range

sub-ps to 10 fs time scale

APPLE II-type undulators

horizontal/circular/vertical

longitud. and transv. coherence

SCIENCE CASE

Low Density Matter

 structure of nano-clusters 	brightness
high resolution spectroscopy	narrow bw, λ -tunability
 magnetism in nano-particles 	circular polarization
 catalysis in nano-materials 	fs pulse and stability

Elastic and Inelastic Scattering				
	Transient Grating Spectroscop the nano-scale)	y (collective dynamics at <i>bw Fourier Tansform Limit</i>		
	Pump & Probe Spectroscopy (states of matter)	meta-stable brightness, λ -tunability		

Diff	action and Projection Imaging		
Sing	le-shot & Resonant Transverse Coherent [Diffraction Imaging	
	morphology and internal structure at the n	m scale	
	chemical and magnetic imaging		brightness

FEL-1 and FEL-2

The two FERMI FELs will cover different spectral regions.

FEL-1: covers the spectral range from ~100 nm down to 20nm.

FEL-2: wavelength range from 20 to ~4 nm.

Starting with seed laser in the UV, will use double cascade high gain harmonic generation. A magnetic electron delay line is installed in order to improve the FEL performance by using the fresh bunch technique. Other FEL configurations are also possible in the future (e.g. EEHG).

Rep rate: Pulse duration FWHM: Pulse shape: Rise-time: Spatial beam profile: flat-top,

UV wavelength (third harmonic): Fundamental Wavelength (for Ti:Sapphire): Pulse energy in UV (for Cu cathode): Timing jitter with respect to the phase reference: Energy stability : Stability of the beam position on the photocathode :

50 Hz (initially 10 Hz) 4-6 ps and 10 ps range flat-top, ripple <5% RMS 0.5-1 ps (10-90%) ~ 1mm (up to 2 mm) radius (on the cathode) 260-263 nm 780-790 nm >0.4mJ < 0.1 ps RMS < 4% RMS : < 10% pk-pk

The old S-band Linac structures have been integrated with:

- 1. RF photo-cathode Gun (SLAC/BNL/UCLA..... $\epsilon_n = 0.8 \mu m$ (500pC, 7.5 ps,100 MeV)
- 2. 7 more CERN/LIL structures......1.35 GeV reached
- 4. X-band TW structure

for phase space linearization

Two movable magnetic chicanes for one- or two-stage bunch length compression have been developed *in house* on improved LCLS desig **compression factor 5-6 used for**

FEL

D. Zangrando, R. Fabris, D. Castronovo, G. Pangon, S. Di Mitri

TRANSFER LINE

Compact (~30 m) **FEL-1/FEL-2 Spreader line**; e-beam **diagnostics** and **collimators** included. Followed by the undulators (~30 m) and the **Main Beam Dump** line (~40 m).

FERMI SEED LASER

STATUS:

Newport News 04/19/2012

Fixed wavelength configuration

Wavelength : 260-262 nm (manually tunable) UV peak power \geq 400 MW Pulse duration (FWHM): 150-220 fs range Energy/pulse >80 µJ Beam dimension (1/e² intensity):

0.8 or 1 mm 1/e2 diameter at virtual undulator

Timing jitter with respect to the phase reference: < 100 fs RMS

Tunable wavelength configuration

Wavelength : 235-260 nm UV peak power \geq 100 MW (>80 MW at 235 nm) Pulse duration (FWHM): 180-200 fs range Energy per pulse >20 µJ (>15 µJ at 235 nm) Beam dimension (1/e² intensity): 1 mm 1/e² diameter at virtual undulator

Timing jitter with respect to the phase reference: <100 fs RMS

70000

60000

50000

40000 ·

20000 -

10000

400 200

255

NTENSITY (a.u.)

258

257

WAVELENGTH(nm)

256

UNDULATORS

Variable gap, planar and APPLE-II type undulators. In house design, manufacturing by KYMA (ST spin-off).....variable polarization & λ -tuning provided to users

13

Longitudinal Phase Space at low energy \rightarrow Cherenkov

- At low energy (5 MeV) Cherenkov radiation is ~5000 more intense than OTR
- Time resolution is related to the index of refraction (the lower the better)
- Only aerogels can reach refraction index value of n=1.008

Transport line and Streak Camera

Longitudinal Profile Measurement

single shot acquisition. 4.6 MeV, 240 pC electron beam Bunch length vs charge at gun exit.

Flat top laser profile, 4 ps FWHM Good agreement: simulation vs exp. data

L.Badano, M.Trovo'

GOALs: monitor bunch length downstream of Bunch Compressors

- ONLINE / NON DESTRUCTIVE

- USABLE BY FEEDBACKS → for FEL output intensity stabilization

Coherent radiation: wavelength λ of radiation ~ bunch length

$$\frac{d^2W}{dfd\Omega} = \left. \frac{d^2W}{dfd\Omega} \right|_{1e^-} (N + N(N-1)|F(f)|^2)$$

Power measurement: power increases as the bunch gets shorter.

Spectral range: from mm-waves to THz

Bunch Length (FWHM-ps)	Coherent onset freq (THz)
5	0.11
0.17	3.25

Coherent Radiation Sources for FERMI BLM:

- Coherent Synchrotron/Edge Radiation
- Coherent Diffraction Radiation from a ceramic GAP

Installed CBLM

Coherent edge radiation

Coherent GAP radiation

Velocity vs accelaration

Operational experience

Test of double compression BC1+BC2

Overcompression Phase @ 122deg in agreement with simulation 90deg on crest condition

Compression feedback

- Pyrodetector used as sensor
- L1 linac phase as actuator

STEP IN term

Negligible for $\beta \rightarrow 1$

- Maxwell equations
- Bolotowskii and Palumbo approach
- No closed solution of the integrals \rightarrow
- Proposed high frequency approx.

R. Appio, M.Veronese, P. Craievich, G. Penco

STEP OUT term

Dominates for $\beta \rightarrow 1$

Pulsed optical timing

Pulsed optical timing system:

Design and prototyping: collaboration with prof. F. X. Kaertner group (MIT) Engineering and contstructi0n: MenloSystems, Gmbh.

Phase noise of the locked OMO \rightarrow Link drift < 5fsec rms over 10days

M. Ferianis, F. Rossi, M. Predonzani

Optical Master Oscillator (OMO) & 6 Stabilized Links

FERMI@Elettra BAM

M. Ferianis, L. Pavlovic, F. Rossi

BAM alignment & calibration

Coarse alignment *SPAGHETTI BOX!!!* Remotely controlled, broadband (12GHz) coaxial delay unit; 7.2ns in 600ps steps to cope with the OMO period (f_{OMO}=157MHz)

Fine alignment: optical delay line housed in the BAM front-end ± 300 ps

M. Ferianis, L. Pavlovic, F. Rossi

Time jitter measurement

BAM acquisition noise <10fs_{RMS}

10 minutes

Typical time jitter CF=1 <100fs_{RMS}

RF and photoinjector laser stability are well in specs!

Machine monitoring and studies

□ collaboration with INFN LNF/Univ. La Sapienza	Frequency	2998.010	MHz
	Filling time Max available RF power	2.4 5	μs MW
Scaling to our working frequency	Integrated transverse voltage @5MW	4.9	MV
of the Alesini's 5-cells RFD	Total length	0.5	m
	Beam energy	320	MeV
	Natural beam size	200	μm
P.Craievich, M.Petronio, G.Penco	Temporal resolution	70	fs
	Bunch Length		

P.Cra

	Bunch Length from Injector (6 ps fwhm)	
<image/>		Bunch length compression (1ps fwhm)

High Energy RF Deflector (HERFD)

Frequency	2998.010	MHz
Filling time	0.5	μS
Max available RF power	15	MW
Integrated transverse voltage @15MW	>20	MV
Total length	2.5	m
Beam energy	1.2	GeV
Natural beam size	70	μm
Temporal resolution	<20	fs

deflection on both planes to manage transverse wakes

> vertical deflector in commissioning horizontal deflector to be installed during 2012

P. Craievich, M. Petronio, G. Penco

HERFD Slice en. Spread @350pC

Electro Optical Sampling FEL1

Design started from suggestions of D.Fritz (SLAC) and in collaboration with S.Jamison (Alice-STFC). First tests at SPARC (LNF-INFN).

31

Time scale calibration

Correlating fiber laser spot size on ZnTe crystal vs ICCD image size. Taking in account geometrical factor for angle of incidence (30 deg)

Calibration Coefficient: 16 fs/pixel

M.Veronese, E.Allaria 27/09/11

... Increasing compression ...

Jitter measurements

Resolution

ZnTe 1 mm and GaP 0.4 mm chosen for first operation are optimized for signal amplitude

High resolution crystal: GaP 0.1mm To be be installed in 2012

Time jitter/ drift measured ~ 80 fs

SEEDING ALIGNMENT

Spatial overlap cross the modulator is carried out with two YAG screens.

Newport News 04/19/2012

1st foil: Al 1µm

2nd foil: AI 1μm

• Stops Seed laser

• Emits Forward CTR

• Reflects TR from 1st

• Emits Forward CTR

Seed bunching measurement

MicroBunching induced by the seed laser at 260nm.

1 st

2nd

CCD

 $\times 10$

signal

photodiode

100

120

140

80

60

x 10

signal

Seed laser Time Delay

62

64

Seed Power

FEL bandwidth (eV)

51.5nm

In the frequency (energy) domain the FEL spectrum is larger than the one of the seed laser.

We expect the FEL pulse to be shorter than the seed laser. \rightarrow

Ideal case for the Nth harmonic the relative bandwidth:

$$BW_{FEL} = \sqrt{N}BW_{SEED}$$

For the 8th harmonics exp. data fitting this model:

 $BW_{rms}^{FEL} = 49meV$ $BW_{rms}^{seed} = 16.3meV$

This suggests that longitudinal coherence is preserved.

Double slit experiments done at 32.5 nm show very good transverse coherence.

Fringe visibility is very high along the entire FEL pulse indicating a very high degree of transverse coherence.

Quantitative analysis is ongoing.

FEL at 32.5 nm, 6 radiators, 450pC, compression ~3. Slit separation = 0.8 mm, width = 20 μ m

E.Allaria, B.Mahieu, C.Spezzani, G. De Ninno, et al.

With the **FEL1 optimized** for **on axis** operation we measured the **exponential gain**. The FEL1 gain has been measured both for **circular** and **planar polarization** showing the expected behavior ($l_q \sim 2$ and 2.5 m).

Measured FEL behavior is in good agreement with FEL simulations using the expected electron beam parameters.

FEL optimization and stability

Optimizing the undulator tuning (both in K and electron beam position) is done by examining the far-field FEL spot size.

A small undulator mismatch (of the order of $\Delta K \sim 0.1\%$) can produce a "doughnut" transverse mode with resonance moved to the outer portions of e-beam

FEL1 Energy/pulse: Tens of mJ in the range 60→20nm

FEL1 Stability: 10-15% rms

I would like to acknowledge:

A.Abrami, R.Appio, M.Bossi, F.Cianciosi, M.Danailov, R. De Monte, G.Gaio, S.Grulja, M.Ferianis, L.Froehlich, M. De Marco, L. Pavlovic, M. Predonzani, F. Rossi, R. Sauro, C. Scafuri, G.Scalamera, C.Svetina, R.Tamaro, M.Tudor.

E.Allaria, P. Craievich, S. Di Mitri, G. Penco, M. Petronio, C. Spezzani, M. Trovo`.

J. Frish, D. Fritz, O.Grimm, P. Krejcik, S. Jamison, H. Loos,

D. Filippetto, M. Bellaveglia, A.Cianchi, A. Mostacci, G. Gatti; M. Del Franco, L.Giannessi.

M.Ferrario, S.Biedron, S.Milton, M.Svandrlik

THANK YOU