Electronic Desig

Detector Hardware

Measurements

Profile Correction

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Summary

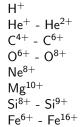
A NEW SYSTEM FOR MONITORING TRANSVERSE BEAM PROFILES

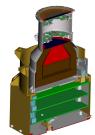
Lauri Panitzsch

Institute for Experimental and Applied Physics (IEAP) University of Kiel, Germany

April 16, 2012

Electronic Desig


Detector Hardware

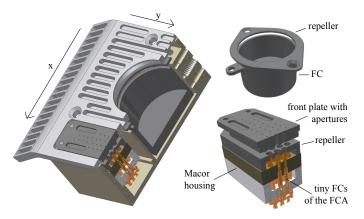

Measurements 000000000 00000 rofile Correction

Summary

Solar Wind Calibration Laboratory

major contributions of ion species to the solar wind:

Electronic Design


Detector Hardware

Aeasurements

rofile Correction

Summary

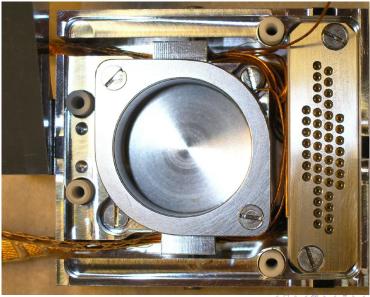
Mechanical Design

cut view of the detector with mounted front cover

detection hardware in detail

[Panitzsch et al., 2009, Rev.Sci.Instrum.] doi:10.1063/1.3246787

Electronic Design 0000


etector Hardware

Veasurements

Profile Correction

Summary

Assembled Detector without Front-Plate

E 990

Electronic Design

Detector Hardware

Veasurements

rofile Correction

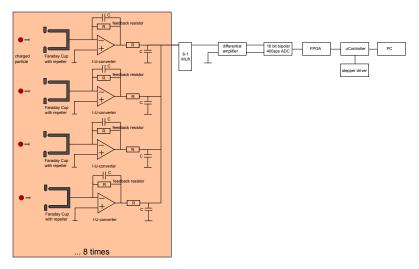
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

Basic Circuit

Electronic Design

Detector Hardware


Veasurements

rofile Correction

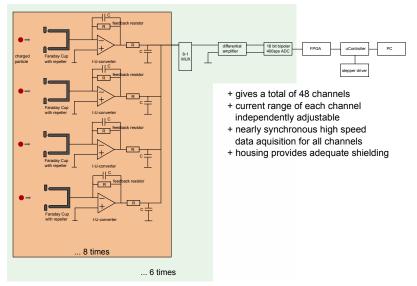
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

1st Iteration

Electronic Design

Detector Hardware


Measurements

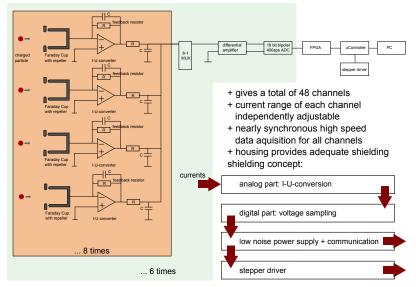
rofile Correction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Summary

2nd Iteration

Electronic Design


Detector Hardware

Measurements

rofile Correction

Summary

Electronic Design Summary

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Electronic Design

Detector Hardware •000 leasurements

rofile Correction

Summary

Detector Hardware

Above: Aluminum housing containing the complete electronics (analog, digital, supply, communication, stepper driver); Right: Vacuum-sided hardware (detector with blinds)

Electronic Desig

Detector Hardware 0000

Measurements 000000000 00000 ofile Correction

Summary

Realtime Animation of Profile Scans

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Electronic Design

Detector Hardware

Measurements

Profile Correction

Summary

Faraday Cup Array (FCA)

Characteristics:

- FC & FCA in one detector

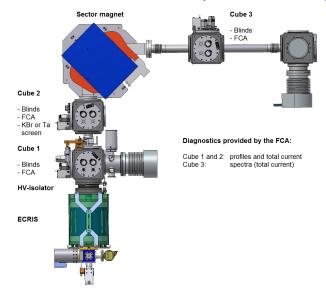
 → profile & total current measurable
- direct measurement with suppression of secondary electron escape
- high durability: up to 40 W of beam power
- fast system: 5 s per profile scan (stepper-limited)

Detector hardware:

- spatial resolution: 22 x 20 measurements/cm²
- scanned area: $45 \times 30 \text{ mm}^2$ (30 mm fix)
- detection of structures on mm-scale

Detector electronics (present configuration):

- large dynamic range: 50 pA \rightarrow 5 μ A \rightarrow high sensivity at absolute current values
- ranges from 200 nA/cm² to 20 mA/cm² (if $P_{beam} < 40 \text{ W}$)


Electronic Desig

Detector Hardware

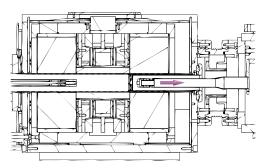
Measurements 0000000000 00000 ofile Correction

Summary

Placements of the FCAs (and Beam Line)

Electronic Design

Detector Hardware


Measurements

rofile Correction

Summary

Ion Beam Focussing

Procedure

Source Settings

pressure inside plasma chamber microwave power microwave frequency extraction voltage	PECR Pμw f _{μw} U _E	1.0×10^{-5} mbar 50 W 11 GHz 15 kV (test 1) from 13 to 2 kV (test 2)
extraction position perpend. to beam line extraction position along beam line	d _{Ep} d _{Ea}	central from 5 to 25 mm (test 1) 25 mm (test 2)

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Electronic Desig 0000 Detector Hardware

Measurements

rofile Correction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Summary

Ion Beam Focussing by Moving the Extraction (Coaxial)

Electronic Desig 0000 Detector Hardware

Measurements

rofile Correction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Summary

Ion Beam Focussing by Moving the Extraction (Coaxial)

Detector Hardware

Measurements

rofile Correction

Summary

Ion Beam Focussing by Moving the Extraction (Coaxial)

The extraction is moved im mm-steps starting at a distance of 5 mm to the plasma electrode ending at a distance of 25 mm.

same scale:

full scale:

Detector Hardware

Measurements

rofile Correction

Summary

Ion Beam Focussing by Moving the Extraction (Coaxial)

The extraction is moved im mm-steps starting at a distance of 5 mm to the plasma electrode ending at a distance of 25 mm.

same scale:

full scale:

Electronic Desig 0000 Detector Hardware 0000 Measurements

rofile Correction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Ion Beam Focussing by Varying the Extraction Voltage cube 1, original scale:

Electronic Desig 0000 Detector Hardware 0000 Measurements

rofile Correction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Ion Beam Focussing by Varying the Extraction Voltage cube 1, original scale:

Electronic Desigi 0000 Detector Hardware

Measurements

Profile Correction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Ion Beam Focussing by Varying the Extraction Voltage

The extraction voltage is lowered in $1\,kV\mbox{-steps}$ starting at a voltage of $13\,kV,$ ending at $2\,kV.$

cube 1:

cube 2:

Electronic Desigi 0000 Detector Hardware

Measurements

Profile Correction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Ion Beam Focussing by Varying the Extraction Voltage

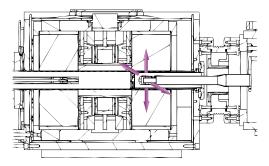
The extraction voltage is lowered in $1\,kV\mbox{-steps}$ starting at a voltage of $13\,kV,$ ending at $2\,kV.$

cube 1:

cube 2:

Electronic Desigr

Detector Hardware


Measurements

ofile Correction

Summary

Ion Beam Steering

Procedure

Source Settings

pressure inside plasma chamber	PECR	1.0×10^{-5} mbar
microwave power	$P_{\mu w}$	50 W
microwave frequency	$f_{\mu w}$	11 GHz
extraction voltage	Ú _E	6 kV
extraction position perpend. to beam line	d _{Ep}	variable
extraction position along beam line	d _{Ea}	25 mm

Electronic Design

Detector Hardware

Measurements

rofile Correction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

Ion Beam Steering

extraction moving horizontally 0.5 mm per step

cube 1:

cube 2:

Electronic Design

Detector Hardware

Measurements

rofile Correction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

Ion Beam Steering

extraction moving horizontally 0.5 mm per step

cube 1:

cube 2:

Electronic Design

Detector Hardware

Measurements

rofile Correction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

Ion Beam Steering

extraction moving vertically 0.5 mm per step cube 2:

cube 1:

Electronic Design

Detector Hardware

Measurements

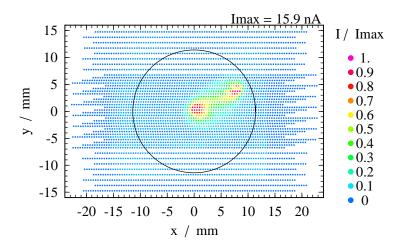
rofile Correction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

Ion Beam Steering

extraction moving vertically 0.5 mm per step cube 2:


cube 1:

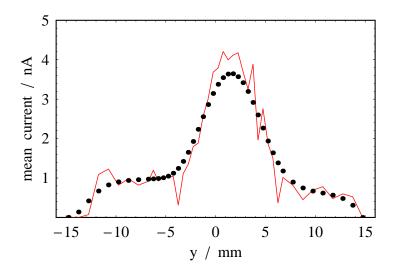
Electronic Desigi 0000 etector Hardware

Measurements 0000000000 00000 Profile Correction

Summary

Original Profile in Discrete Representation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?


Electronic Desig

Detector Hardware

Measurements 0000000000 00000 Profile Correction

Summary

Cross Direction Profile (1D)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Electronic Desig 0000 etector Hardware

Measurements 000000000 00000 Profile Correction

Summary

Comparison Between Corrected and Original Profile

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Mechanical	Design
00	

Electronic Design

Detector Hardware

Veasurements

ofile Correction

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Summary

Summary

Detector Hardware (FCA):

- no wearing parts
- high durability
- high spatial resolution

Electronic Design

Detector Hardware

Aeasurements

ofile Correction

Summary

Summary

Detector Hardware (FCA):

- no wearing parts
- high durability
- high spatial resolution

Electronics:

- large dynamic range
- (adaptable upon demand)
- fast, reliable, and compact system
- very good reproducibility
- applicable for positive and negative currents

(electron and ion beams)

Electronic Design

Detector Hardware

Aeasurements

ofile Correction

Summary

Summary

Detector Hardware (FCA):

- no wearing parts
- high durability
- high spatial resolution

Electronics:

• large dynamic range

(adaptable upon demand)

- fast, reliable, and compact system
- very good reproducibility
- applicable for positive and negative currents

(electron and ion beams)

Outlook:

• benchmark runs with scintillation screens at GSI Darmstadt

Electronic Design

etector Hardware

Aeasurements

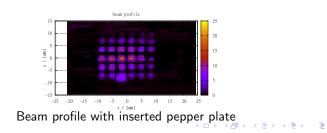
ofile Correction

Summary

Summary

Detector Hardware (FCA):

- no wearing parts
- high durability
- high spatial resolution


Electronics:

- large dynamic range
- (adaptable upon demand)
- fast, reliable, and compact system
- very good reproducibility
- applicable for positive and negative currents

(electron and ion beams)

Outlook:

• benchmark runs with scintillation screens at GSI Darmstadt

