

Synchrotron Radiation- "Electronic Light"

The angular and spectral distribution are well described in Classical E&M

Total Rate

Angular Distribution

Spin Dependence of Synchrotron Radiation

Exact QED calculations by A.A. Sokolov and I. M.Ternov (1960s)

QED corrections give electrons spin dependence in the radiated power

spin-flip dependent term spin dependent term

To the first order in ξ the difference in SR intensity between polarized and unpolarized electrons is $\delta = \xi - 10^{-4}$ for 100 μ A, 0.5 GeV electrons

Verified experimentally at the VEPP-4 storage ring in Novosibirsk Belomesthnykh et al., NIM 227, 173 (1984) An RF field used to

(^N/N2-1)×10⁴ 6 t×10 sec

The spin-flip term contributes only as ~

This is responsible for the transverse self polarization of electron beams in storage rings: called the Sokolov-Ternov effect

Used to produce polarized electrons at various accelerator such as DESY

Longitudinal "Spin Light"

For longitudinally polarized electrons

Power from n electrons (ignoring spin flip and all terms $O(\xi^2)$)

An odd function of the vertical angle

Integrated over all vertical angles the total SR power is spin i

of photons radiated above and below the orbital plane are not equal

Figure 1: Geometrical definitions.

Beam Polarization Measurement Using Synchrotron Radiation

Dipangkar Dutta, Mississippi State University Hamlet Mkrtchyan, Yerevan Physics Institute

"Spin Light" - Some Characteristics

of photons increases sharply with energy but relatively small change in asymmetry

Conceptual Design of "Spin Light" Polarimeter

Number of photon ~ 10⁵ different

Horizontal angular acceptance $\Delta \theta$ fixed to 10 mrad

For E_a = 11 GeV, spot size = 90 µrad i.e. 10m from the source ~ 1 mm dia.

A Detector of Spin light (X-rays) A differential ionization chamber

$B_{wrig} = 4 T; L \sim 10 cm$ Spacing between wriggler have to be optimized

A Source of Spin light

A 3 pole wiggler magnet

Pole length and figure of merit have similar dependence on the B- field.

Twin chamber design can reduce systematics Visible portion can be used to center chamber

Gas – Xe or Kr

Can handle high rates **Radiation hard** Low dark current/noise Resolution $\sim 5 \,\mu m$ Wide range of ICs commercially available

K. Sato, J. of Synchrotron Rad., 8, 378 (2001) T. Gog, D. M. Casa, I. Kuzmenko, CMC-CAT@ the APS

Putting it all together

Differential ionization chamber Placed 10 m from source Twin chamber design with common collector