
HYPPIE: A HYPERVISORED PXI FOR PHYSICS INSTRUMENTATION
UNDER EPICS

James Rezende Piton, Márcio Paduan Donadio, Diego de Oliveira Omitto, Marco Antonio Raulik
and Harry Westfahl Jr., LNLS, Caixa Postal 6192, Campinas – 13083-970, Brazil

Bruno C. Yenikomochian, National Instruments, Av. Paulista, 509, São Paulo – 01311-910, Brazil

Abstract
Brazilian Synchrotron Light Laboratory (LNLS) has a

1.37 GeV source open to scientific community since
1997. Recently, the control system of its beamlines,
originally designed within a proprietary Delphi/Windows
platform, is going through an upgrade to the open source
EPICS/Linux platform. Within this upgrade strategy, the
use of off-the-shelf hardware was also considered an
alternative to the original in-house developed equipment,
while keeping the EPICS/Linux compatibility. A PXI
chassis and its modules were made available to EPICS
through the NI Real-Time Hypervisor virtualization
system that allows running simultaneously EPICS/Linux
and LabView Real-Time in the same PXI controller,
sharing a common memory block as their communication
interface. Hyppie is the data exchange protocol developed
in a collaboration between LNLS and National
Instruments (NI) to implement motor, scaler and binary
in/out EPICS records and channel access in the Linux
layer, leaving the low-level hardware control to the
LabView RT layer. This solution was tested to control an
X-ray absorption spectroscopy beamline, showing
stability and reduction of counting dead-time and
software development time for integrating new hardware.

EPICS IN A NEW CONTROL SYSTEM
FOR THE LNLS BEAMLINES

LNLS has projected, developed and built a large
number of components for its accelerator complex and
beamlines. As a National Laboratory under the Brazilian
Ministry of Science, Technology and Innovation, one of
LNLS primary goals is to develop skilled human
resources in several technological fields. Back in the
1990s, severe budget constraints and industrial policies in
Brazil at that time led to the decision to create at LNLS
also its own hardware platform for data acquisition,
LOCO [1]. For 20 years, interface boards have been
evolved and produced at LNLS, applied to its control
system and also transferred to industrial applications.

Nevertheless, such a program of development and
specially maintenance of electronics made “at home”
needs a lot of well-trained technicians, not always
available in a local demanding job market. A process of
upgrade of the beamlines allowed to start an internal
discussion on alternatives to the control, while a new
concept of LNLS hardware is in project for Sirius, the
new 3GeV machine to be built at LNLS. Moreover, a
recent project for remote access of the beamlines
demanded the use of a distributed control system with
APIs ready to be integrated in Java. EPICS was the choice

as the middleware, for its long development, open-source
features, covered hardware and vast collaborative
community. But the hardware for the scientific facilities
still matters, due to the budget and choices in the local
market. In this project, hardware produced by National
Instruments was chosen as it achieves the specifications
required and the manufacturer has offices in Brazil.
Nevertheless, it still should fit in the project of adoption
of the distributed control system, EPICS. Therefore, in a
collaborative effort, LNLS Beamline Software Group and
National Instruments Brazil conjointly pursued a solution.

PROJECT HYPPIE
Hyppie is a project created by LNLS and NI Brazil to

make a bridge between EPICS records and corresponding
devices in the PXI chassis. Real-Time Hypervisor for
Linux uses virtualization technology to run both Red Hat-
based Linux and NI LabView RT in parallel on multicore
PXI controllers. I/O devices, RAM and CPU cores are
partitioned between both OS.

A standard EPICS distribution is installed in Linux and
new hardware drivers can be written in LabView. Shared
memory provided by Hypervisor is allocated by Hyppie
as a map to deal with each piece of hardware, through
commands, parameters and readouts. EPICS IOCs
running in the Linux side refer to the shared memory
instead of any direct I/O access.

Hyppie already supports EPICS binary-in/out, analog-
in/out, scaler and motor records. Furthermore, the EPICS
installation can have IOCs to normally access other
remote devices on the network. In Linux, IOCs device
support [2] is implemented and the communication with
each device is done reading from and writing to the
corresponding shared memory block, accessed
simultaneously by VIs running in LabView RT.

Whenever a new device needs to be inserted into
Hyppie, the device operation is programmed in LabView,
and runs in LabView RT. The complexity of the protocol
to communicate to the devices is attenuated by the
simplicity of LabView programming. This can increase
development productivity.

LabView RT
In the LabView RT side, there are 3 big groups: a

config file, a VI to read the config file and VIs for each
record type. The config file is a textual description of
every module to be dealt in both sides. Through a
RecordName section specifying the kind of record (e.g.
PARKER_MOTORS, IMS_MOTORS or SCALERS), a
block identifier SharedMemoryName with its Parameters

Proceedings of BIW2012, Newport News, VA USA MOPG031

Data Acquisition Technologies

ISBN 978-3-95450-121-2

95 C
op

yr
ig

ht
c ○

20
12

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

defines the memory allocation and the way the data in
that shared memory will be interpreted. Parameters can
describe the serial port used, a timing factor, a device
address or a board identification.

The VI responsible for reading the config file parses
each record block and parameters and organize them in
arrays that are linked appropriately to the VI of each
record type.

IOCs in the Linux side
To simplify some work that must be done in each IOC,

a common library was created to put together header files
and binaries of the Hypervisor system API. That
PXIcommonlib provides some useful functions:

• pxiCreateSM: function available in the IOC
shell. It is used to connect to shared memories
and get the necessary handle numbers.

• pxiSearchSM: record device support reads OUT
or INP fields in order to get shared memory
names and use pxiSearchSM() to recover the
handle number.

• CHECK_AND_THROW: macro that prints
messages on the return value from shared
memory library functions, when an error is
raised.

• pxidebugMsg: prints some messages useful for
application debugging.

Using this common library, all the device support needs
to do is to use VLXSMReadBlock and VLXSMWriteBlock
API functions to communicate with programs running in
LabView. VIs implementing a record type has a structure
as shown in Figure 1.

AVAILABLE RESOURCES IN HYPPIE
At present, Hyppie counts on the resources needed to

produce an Exafs experiment at LNLS XAFS1 beamline:
counters, motors and digital I/O. This beamline was
recently refurbished and has been used as a workbench to
test the new concept.

Binary I/O
DigitalPXI is the software module in Hyppie to manage

digital I/O interfaces. The IOC structure and device

support were derived from instructions and templates
from EPICS base R3.14.11.

The software running in LabView RT initializes the
boards and assigns the shared memory block. The values
of input channels are continuously read and transferred to
the memory (binary-in) and, conversely, all output are
updated from the shared memory (binary-out). Binary-in
and binary-out have 17 fields of 4-byte integer each.

Acting as a watchdog, a counter in the first field of the
shared memory block is incremented to indicate that the
hardware is being used. If the counter doesn’t increase,
the record alarm is set, showing the values are not
updated. The binary-in fields can be seen in Table 1.
Symmetrically, the fields of a binary-out record are read
by RT and written by Linux.

Table 1: Shared Memory Allocated for Binary-In Record

Field Description Read Write

0 Counter indicating OK Linux RT

1 Input value 0 Linux RT

...

16 Input value 15 Linux RT

Counters
The ScalerPXI is based on module std-2-8 from EPICS

synApps-5-5, with support to Scaler Record v3.19. This
record holds 64 counting channels, with the first one (S1)
being the clock counting under the selected hardware
frequency (FREQ). Currently, the implemented code in
the LabView RT side makes available 4 channels, what is
enough for Exafs experiments. The LabView RT side
determines how many hardware channels are available to
the Linux side through a shared memory block field.

There are 3 data acquisition modes:
a) Pulse counting of low voltage signals
b) Integration of a voltage signal
c) TTL-pulse counting
In the first two modes, LabView RT gets readings from

the dynamic signal acquisition module PXI-4462 and a
digital I/O counter PXI-6602 is used in the other mode.
The way the shared memory works is the same for all
modes.

The corresponding VI in LabView RT waits for
commands from the ScalerPXI IOC through the shared
memory. Only two commands are needed to implement
Hyppie Scaler Record: one for triggering and other for
halting, if necessary. Previously to every counting trigger,
the IOC writes into the shared memory the counting time,
given in tenths of microseconds. The default frequency is
10MHz.

The balance between time resolution and processing
cost has been optimized by choosing 2 ms as the time
window for hardware integration. Smaller amounts of
time are unnecessary for Exafs experiments at LNLS.

Figure 1: Logical structure of a VI implementing a
Hyppie record type.

MOPG031 Proceedings of BIW2012, Newport News, VA USA

ISBN 978-3-95450-121-2

96C
op

yr
ig

ht
c ○

20
12

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Acquisition Technologies

The VI is compatible with a preset-counter operation. If
a channel has its gate field active, a preset will be used to
determine the end of counting.

Table 2 shows the fields of the shared memory, each
one a four-byte integer. The IOC scaler 1 (clock counting)
is defined as a counter in the shared memory, being the
hardware counting channels (scalers 2 to 64) defined as
channels 1 to 63.

Table 2: Shared Memory Allocated for a Scaler Record

Field Description Read Write

0 Command
(start/stop counting) RT Linux

1 Status
(0:idle/1:counting/2:hw error) Linux RT

2 Number of channels
(1 to 63; default: 4) Linux RT

3 Frequency in Hz
(1 to 4.2 GHz; default: 1E7) RT Linux

4 Counter value (on freq.) Linux RT

5 Channel 1 value (counts) Linux RT

...

67 Channel 63 value (counts) Linux RT

68 Counter gate control RT Linux

...

133 Channel 1 Preset RT Linux

...

195 Channel 63 Preset RT Linux

Motors
A motor record uses a shared memory block of 18

fields, each with 4 bytes in size. Some fields are shown in
Table 3. Using this fixed structure, Hyppie Motor Record
device support does not have to be changed when
implementing a new motor family.

Implementation of device support is based on the
commands provided by motor record support, using the
function start_trans [3, 4]. Table 4 lists some command
codes transmitted from the IOC in Linux to the LabView
RT program.

Table 4: Command Codes for the Hyppie motor Record

Command Description

1 Move to absolute position

2 Move to relative position

3 Go to home in forward direction

4 Go to home in reverse direction

5 Change desired position

6 Change base velocity

... ...

20 Read limit /home switches

21 Read movement status

22 Read position

At the present time, IMS MDrive and Parker OEM 750

are working in Hyppie Motor Record.

CONCLUSION
Hyppie is proving to offer the advantages it is designed

for. A wide array of PXI instrumentation modules is
available, as PXI is a standard common to a variety of
manufacturers. In addition, Hyppie benefits from the ease
of programming (LabView) and the use of libraries
provided by the hardware vendors. Tests performed in the
LNLS XAFS1 beamline shown gain in signal to noise
ratio and reduction in the acquisition dead-time, with the
new system of hardware and software [5]. Further
implementation is in course to include more features like
aSyn records and CCD detectors. That will meet the
needs of other LNLS beamlines to be refurbished in the
next months. Source code and documentation of this
open-source project will be soon available at:
http://www.lnls.br/sol/hyppie

REFERENCES
[1] P. F. Tavares et al., “LNLS Control System” EPAC’96,

Sitges, June 1996, TUP062L; http://www.JACoW.org
[2] M. R. Kraimer et al., “EPICS Application Developer’s

Guide - EPICS Base Release 3.14.11”, February 2010.
[3] M. Davidsaver and D. Chabot, “Motor Record Device

Support” v. 1, February 2010; http://pubweb.bnl.gov/
~mdavidsaver/epics-doc/epics-motor.html

[4] T. Mooney, J. Sullivan and R. Sluiter, “Motor Record and
Related Software”, June 2003; http://www.slac.stanford.
edu/grp/cd/soft/epics/site/motor

[5] D. C. Coelho et al., “The upgrade of XAFS1 beamline at
the Brazilian Synchrotron”, SRI 2012, Lyon, TH-M-P-28.

Table 3: Shared Memory Allocated for a Motor Record

Field Description Read Write

0 Command (see Table 4) RT Linux

1 Error (3 bytes) Linux RT

2 Absolute movement (steps) RT Linux

3 Relative movement (steps) RT Linux

4 New desired position
(steps)

RT Linux

...

Proceedings of BIW2012, Newport News, VA USA MOPG031

Data Acquisition Technologies

ISBN 978-3-95450-121-2

97 C
op

yr
ig

ht
c ○

20
12

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

