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Abstract
Stripline BPM sensors  contain inherent  nonlinearities 

as a result of field distortions from the pickup elements. 

Many methods have been devised to facilitate corrections, 

often  employing  polynomial  fitting.  The  cost  of 

computation  makes  real-time  correction  difficult, 

especially when integer math is utilized. The application 

of neural-network technology, particularly the multi-layer 

perceptron (MLP) algorithm, is proposed as an efficient 

alternative  for  electrode  linearization.  A  process  of 

supervised  learning  is  initially  used  to  determine  the 

weighting coefficients, which are subsequently applied to 

the incoming electrode data. A non-linear layer, known as 

an  “activation  layer,”  is  responsible  for  the  removal  of 

saturation effects.  Efficient calculation of the sigmoidal 

activation  function  via  the  CORDIC  algorithm  is 

presented as an expedient for implementation of an MLP 

in an FPGA-based software-defined radio (SDR).

INTRODUCTION

Detection of beam position in accelerators is a mature  

subject,  utilizing  a  myraid  of  calculation  schemes.  RF-

based  ratiometric  methods  employing  stripline  BPMs 

generally  adopt  an  approximation,  since  the  accelerator 

beams are designed to remain within a few millimeters of 

boresight,  thus  maintaining  reasonable  linearity. 

Precision  optical  models  for  JLAB's  electron  beam 

assume a position accuracy of <100um, placing additional 

demands  on  the  BPMs.  Position  calculations  are  often 

achieved by difference-over-sum (delta/sigma) or log-ratio 

approximations, with typical accuracies of 1%. 

As  part  of  an  ongoing  upgrade  efffort  at  JLAB,  a 

stripline BPM from ELBE in Rosendorf has been studied 

as a possible improvement to the standard wire BPMs [1]. 

The anticipated benefits  include reduced cost, improved 

manufacturability,  and  an  increase  of  sensitivity  from 

1dB/mm to 2dB/mm. A prototype stripline was tested  as 

before, and compared with the wireline BPM. A slope of 

2dB/mm was observed for senstivity at boresight, but at 

the potential cost of nonlinear behavior off-center, 

BPM NONLINEARITY

Precise position determination often assumes linearity 

with respect to the sensor, the electronic detection system, 

and also the algorithm. However, nonlinearities appear at 

nearly every point in the chain, which must be considered 

when attempting to measure higher-order  effects on the 

accelrator  beam.  A  series  of  recent  measurements  at 

JLAB  included  mapping  sextupole  fields  using  BPMs. 

The  BPM  nonlinearities  were  of  the  same  order  of 

magnitude, and had to be precisely determined, such that 

they could be removed from the data set [2]. The first step 

in  the  process  involved  assessing  the  validity  of  the 

algorithms,  and verifying the empirical  constant values. 

As  an  example,  the  delta/sigma  and  log-ratio  methods 

were employed after data was collected using a Goubau 

Line test bench, and an Agilent 3-port network analyzer as 

a  detector  [3].  The  nonlinear  aspects  were  clearly 

observed, as demonstrated in Figure 1. 

Figure  1:  Comparison  of  BPM  position  algorithms, 

demonstrating nonlinear behavior away from boresight.

Stripline BPM

Complete field maps were obtained using the G-Line 

testbench,  confirming  the  rather  large  distortions  for 

radial displacements greater than 1 cm within the stirpline 

BPM. Although typical beam steering is contained within 

the 1 cm2 area, the intial concern was that operators would 

have  little  information  beyond  that  region,  possibly 

contributing  to  beam  strikes.  Although  the  log-ratio 

algorithm improved the distortion, the effect still required 

rectification before insertion into the accelerator. Figure 2 

compares resulting field maps, utilizing delta/sigma.

Figure 2: G-Line-derived delta/sigma field maps (both +/-1cm) 

for wireline and stripline BPMs. Units are in cm. 
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NEURAL NETWORKS: THE MLP

Although the field of Neural Newtworks is quite broad, 

the specific modeling of pattern recognition by Rosenblatt 

in 1958 resulted in an algorithm known as the Multi-Layer 

Perceptron  (MLP) [4].  Given  a  set  of  finite  inputs  and 

outputs,  the  paths,  or  nets,  are  interconnected  with  a 

hidden  layer  using  weighting  coefficients,  as  shown 

schematically in Figure 3. 

Figure 3: MLP schematic  having three inputs, two outputs, and 

a hidden layer consisting of five neurons.

Although Rosenblatt  described the  ability  of  a  three-

layer  MLP  to  mimic  any  linear  function  to  arbitrary 

accuracy, recent utility has been improved with the use of 

nonlinear  logistic sigmoid “activation functions” for the 

hidden layer, facilitating nonlinear mappings [5]:

�� � ��
�

������

where

z = neuron input

���������� = saturation weighting

 

A  sigmoid  is  especially  attractive,  since  it  closely 

mimics the saturation observed by the BPM sensor and 

associated  algorithms,  while  retaining  linear  behavior 

near  the  origin  (ie.  BPM  boresight).  In  addition,  a 

sigmoid-based MLP can perform coordinate rotations and 

trigonometric functions.

MLP Learning

Learning  is  the  process  whereby  coefficients  are 

adjusted,  so as to minimize the cost-function error  (eg. 

RMS) between the current MLP output, and the intended 

output.  Typically,  a  training-target  data  set  is  obtained, 

either from past experience, or in this case, from a rotary 

optical encoder employed in the actual field map. Figure 4 

compares a slice of the raw field input training data set to 

the  actual  encoder  target  data  set.  An  MLP  with  four 

inputs,  a  single  hidden  layer,  and  two  outputs  was 

assigned BPM electrode inputs X+, X-, Y+, Y-, while the 

outputs  were  the  signed  X  and  Y  positions.  Although 

provisions  for  a  third  output  representing  the  four-wire 

sum  was  available,  it  was  ignored.  After  an  entire 

measurement,  approximately 50 iterations were required 

to obtain the necessary weightings. A procedure known as 

output-weight optimization with backpropagation (OWO-

BP)  simultaneously solves  a system of  linear  equtaions 

and updates the coefficients, via a steepest-descent, with 

each pass [6] . As a calculation expedient, MATLAB was 

used for  the  learning  process,  which employs a similar 

Levenberg-Marquardt (LM)  cost-function method [7].
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Figure 4. Partial field map of training stripline BPM data, (blue), 

compared  with  the  target  data  (red)  for  supervised  MLP 

learning. Nonlinearity is clearly demonstrated.

RESULTS

The intended result of MLP application was to yield  a 

1  cm2 active  region  along  the  BPM boresight.  A two-

neuron  hidden  layer  was  first  attempted,  minimizing 

computational  overhead.  Although  the  algorithm 

struggled with the field fringes, a  1 cm2  mean-squared 

error (MSE) of ~500 um resulted, with most of the area 

<300 um. Although close to the 100 um target, smaller 

MSE is still required. MSE data is presented in Figure 5.
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Figure 5.  MSE resulting from a 2-neuron hidden layer  MLP. 

The 3-D plot shows blow-up at the BPM corners, while the 2-D 

plot highlights the ~300 um MSE within the 1cm2 active region 

about boresight. MSE units are in cm.
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Incresing the number of hidden layer neurons had the 

desired  effect  of  reducing  the  MSE within  the   1  cm2 

active region. Four neurons resulted in a MSE of ~200 

um, while eight neurons suppressed the error to ~50 um. 

In  addition,  a  45 degree  coordinate  rotation  was easily 

handled by the  eight neuron case,  potentially  removing 

the requirement from post-processing. Figure 6 compares 

the MSE data for four and eight neurons, respectively.

4 Neuron Network Error
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Figure 6. MSE resulting from 4-neuron MLP (left) and 8-neuron 

MLP (right). MSE largely below 200um is demonstrated for 4-

neurons, while 8-neurons suppress MSE to well below 100um. 

MSE units are in cm.

Over-fitting  of  the  data  was  slightly  apparent  at  the 

MLP output map fringes with eight neurons, as evidenced 

by  small  whisps  resembling  solar  flares.  Single-pixel 

outliers, as seen in Figure 6, are also possible indications 

of over-fitting. Further increasing the number of hidden 

layer neurons resulted in other obvious distortions.  It was 

therefore  determined  that  the  least  number  of  nuerons 

resulting  in  the  prescribed  MSE  provided  the  best 

strategy.  Computational  load  is  also  minimized  by 

performing a minimalization of the resulting MLP.

FPGA Implementation

Unlike  large-order  polynomial  linearization,  which 

generally requires post-processing, the MLP is well suited 

for use in an embedded software defined radio. Once the 

MLP  weights  have  been  determined  via  G-line 

measurements, model and simulation, or even beam-based 

calibrations,  the task of  computing the logistic  sigmoid 

functions  remains.  Fortunately,  modern  FPGAs  contain 

the  necessary  arithmetic  blocks  within  their  core  to 

simplify the computation by employing approximations or 

through  the  use  of  the  ubiquitous  CORDIC  algorithm 

[8,9,10].  Since  the  MLP is  also  capable  of  performing 

rotations, post-processing of rotated or mis-aligned BPMs 

is potentially avoided. 

CONCLUSION

BPM  position  inaccuracies  are  a  result  of  sensor 

nonlinearities, inevitable algorithmic approximations, and 

analog receiver  electronics.  BPM sensors  are inherently 

nonlinear,  but  might  otherwise  possess  attractive 

attributes.  Strategic  selection  of  numerical  algorithms, 

specifically the MLP, can account for all of these effects, 

requiring only training and target data sets, followed by a 

learning procedure. Eight hidden layer neurons resulted in 

position  data  sufficient  for  precision  optical  models. 

Subsequent use in a SDR is made possible by the use of 

available  FPGA  routines.  Real-time  processing  is 

therefore realized, eliminating complicated models, curve-

fitting,  or  look-up  tables.  In  addition,  the  BPM can be 

trained  for  specialized  applications,  possibly  involving 

intentional distortions or additional pre-processing.
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