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Abstract 
A group of sinusoidally-wound coaxial toroidal coils 

can be used to determine the transverse distribution of a 
time-dependent current through their common aperture.  
The current is expressed in a basis of chapeau (pulse) 
functions over an array of pixels, and matrix methods are 
used to calculate the current in each pixel from the 
voltages induced on the coils.  Optimum configurations of 
pixels are used, for which the condition number of the 
matrix is bounded by the number of pixels.  For example, 
with 50 pixels the fractional errors in the currents are 
approximately 50 times the fractional errors in the 
measured voltages in addition to imperfections in the 
fabrication and placement of the coils. Numerical tests 
were made by specifying the currents, calculating the 
induced voltages, adding Gaussian noise to model 
measurement errors, and then using the algorithms to 
calculate the currents.  These simulations confirm that the 
condition number is bounded by the number of pixels.   

INTRODUCTION 
Others have used a variety of different techniques to 

monitor the transverse distribution of the beam current in 
accelerators, including secondary emission monitors, wire 
scanners, multi-wire chambers, gas curtains or jets, 
residual gas monitors, scintillator screens, scrapers and 
measurement targets, synchrotron radiation, and Laser-
Compton scattering [1], as well as optical transition 
radiation [2] and the deflection of a probe beam of 
electrons [3].    

A Rogowski Coil is a non-ferrous current probe formed 
by bending a uniformly wound helical coil to follow a 
closed curve having arbitrary shape [4-6]. When a time-
dependent current passes through the aperture that is 
enclosed by the bent helix a voltage is induced on the coil 
which is independent of the location of the current.  
However, currents that are located outside of the aperture 
do not induce a voltage on the coil.  Deviations from a 
uniform winding are carefully avoided because they cause 
the induced voltage to depend on the location of the 
current within the aperture, but it will be shown that a 
group of coils having a specific type of nonuniformity 
may be used to accurately determine the transverse 
distribution of the current. 

ANALYSIS 
Figure 1 is a diagram used for deriving expressions for 

the open-circuit voltage induced on a non-ferrous toroidal 
coil that may have a nonuniform winding.  The toroid has 
a mean radius R, and the cross-sectional area of the tube 
of the toroid is A.  Consider the induction in an 
incremental winding of length Rdθ that is centered at 

(R,θ) or equivalently (X1,Y1), which is caused by a 
filament with current I = I10ejωt that intersects the X,Y 
plane at point P(X2,Y2).  The dashed line L1 is directed 
normal to the increment of winding.  Dashed line L2 is 
parallel to the magnetic field, and dashed line L3 is 
parallel to the X-axis.  
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Figure 1: Diagram for analysis. 
 

Let N’(θ) be the number of turns per unit length of the 
coil, as measured on a circle with radius R.  For example, 
with a toroidal coil having a uniform winding, N’ = N0’ = 
NT/2πR, where NT is the total number of turns. The 
number of turns in an increment of the winding is dN = 
N’(θ) R dθ.  Thus, if the height and width of the tube are 
much less than R, the open-circuit voltage on the entire 
winding is given by 
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Using trigonometry to obtain an expression for cos(β - θ), 
Eq. (1) simplifies to give the following: 

 
The expressions for N’ are chosen from the following 

set, which constitutes the basis for a Fourier series: 

 
where the NJC’ and NJS’ are coefficients as is N0’.    By 
substituting the set in Eq. (3) into Eq. (2), and evaluating 
the integral, the open-circuit voltage that is induced on 
each coil is given by the corresponding term of the 
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following set:  

 
where R2 < R so that the current must be located within 
the aperture.   
Expressions for Currents with Known Locations 

Consider the case where the locations of M filaments 
are defined and the currents in each of these filaments are 
to be determined, or equivalently, the cross-section of the 
aperture is divided into a group of M pixels which are 
small enough that the current in each one may be 
represented by a chapeau (pulse) function.  Let the current 
and the coordinates of the Jth pixel be IJ = IJ0ejωt and (RJ, 
θJ), respectively, for J = 1 to M.   

It is convenient to require that M = 2K +1, an odd 
integer, and require coils with the number of turns per unit 
length being N0’, and both NIC’ and NIS’ (cosine and sine 
terms) having I = 1 to K.  That is, there are a total of M 
coils. Furthermore, define the normalized radial 
coordinate SJ = RJ/R, and the impedances Z0 = ωµ0AN0’, 
ZJC = ωµ0ANJC’/2, and ZJS = ωµ0ANJS’/2, where the 
reactance of the self inductance of the N0’ winding is jZ0.  
Thus, Eq. (4) may be generalized to give the following set 
of equations for the induced voltages: 

 
where Eqs. (5B) and (5C) each hold for I = 1 to K.   The 3 
equations, (5A)-(5C) define a matrix which relates the M 
measured voltages to the M unknown currents.   

Determination of the Ill-Conditioning  
Consider the general matrix equation Ax = b, where A 

is a square matrix and x and b are column vectors.  The 
“direct” problem is defined as solving for the column 
vector b when A and x are given, and the “inverse” 
problem is solving for the column vector x when A and b 
are given.  For example, in the present work the direct 
problem would be calculating the open-circuit voltages 
when the currents are known and the inverse problem 
would be calculating the currents when the open-circuit 
voltages are known.   

The errors in solving the inverse problem are frequently 
much greater than those in solving the forward problem 
because of what is called “ill-conditioning” of the matrix.  
It is possible to place an upper bound on the errors in 
solving the inverse problem as follows:  

  

where ║A║║A-1║, which is the product of the norm of 
the matrix and the norm of the inverse of the matrix, is 
defined to be the condition number of matrix A.  Several 
different norms have been used by others, but the 
Frobenius norm (or Hilbert-Schmidt norm) which is used 
here is defined as follows [7]:  

 

NUMERICAL TESTS OF ALGORITHMS 

Reduction of Ill-Conditioning of the Matrices 
Numerical tests were made to determine the condition 

number for the matrix that is defined by Eqs. (5A)-(5C), 
using the Frobenius norm with different values of θJ, SJ, 
and the impedances.  

In the first series of tests the current filaments were 
placed on a circle with a normalized radius SJ = 0.5, and 
the values of the θJ were chosen to minimize the condition 
number, which requires that they are evenly spaced on the 
circle.  Figure 2 shows an example for M = 3.  It was 
determined that the condition number has a minimum 
value that is equal to M when ZIC = ZIS = 1.5Z0/SJ

I for all 
values of I so that all of the terms in the matrix have 
comparable magnitude.  For example, with M = 7, the 
condition number has a value of 7.0 when Z1C = Z1S = 
3.0Z0, Z2C = Z2S = 6.0Z0, and Z3C = Z3S = 12.0Z0. For 
comparison, when ZIC = ZIS = 0.5Z0 for all values of I, the 
condition number is equal to 2.403 x 2(M+1)/2 which is 
much greater than M when M is large.   

 
Figure 2: Partitioning of the aperture into 3 sectors. 

 
Further numerical tests were made using pixels that are 

distributed over the full area of the aperture. Figure 3 
shows an example with 9 current filaments that 
corresponds to the partitioning of a circular aperture into 9 
pixels having equal area.  In calculations for Z1C = Z1S = 
Z2C = Z2S = Z3C = Z3S = Z4C = Z4S = 0.5Z0 the condition 
number equals 155.  However, for Z1C = Z1S = 2.0Z0, Z2C 
= Z2S = 6.5Z0, Z3C = Z3S = 11.0Z0, and Z4C = Z4S = 23.0Z0, 
so that the matrix elements have comparable magnitude, 
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the condition number is reduced to a value of 46. The 
transverse distribution of current could be determined for 
this array of pixels by using the measurements made with 
9 coils.   

    
Figure 3: Partitioning of circular aperture into 9 segments.  

Numerical Simulations 
Numerical simulations were made by specifying the 

magnitudes, phases, and locations of the currents, 
calculating the induced voltages, adding Gaussian noise to 
model measurement errors, and then using the algorithms 
to calculate the currents and their locations.  These results 
were compared with the input values to find the errors, so 
the degree of the numerical stability could be determined.  
Highlights of the results of these tests are as follows:  

 
● For pixels that are evenly spaced on a single circle 

within the common aperture of a group of toroidal coils, 
the practical upper limit for the maximum number of 
pixels is set by the number of coils that can be used for 
the measurements and not by ill-conditioning of the 
matrix. 
 

● The maximum number of pixels that may be used is 
significantly reduced when the pixels are distributed 
over an area within the aperture.  
 

● It is not surprising that these results are consistent with 
the results of the numerical tests in which the condition 
number was determined for the matrices without 
specifying the magnitudes or phases of the currents. 

CONSTRUCTION OF PROTOTYPES 
It will be necessary to construct high-precision 

uniformly-wound and sinusoidally-wound toroidal coils 
having as many as 100 to 500 turns in order to be able to 
measure the transverse distribution of current.   

Rapid Prototyping methods such as Stereolithography 
and 3D-Printing could be used to fabricate toroidal forms 
with grooves in which wires would be placed to form the 
coils.  Typically models made using these techniques have 
a resolution of 10-100 µm.  Prototype toroids having an 
outer diameter as large as 50 cm could be made with these 

methods, and one possible means for fabricating larger 
toroids would be to use Rapid Prototyping to prepare 
sections that would be connected together. Rapid 
Prototyping requires a data file with the (X,Y) coordinates 
for each Z value corresponding to the height of a given 
layer of the model.    

Determining the Equation for the Coil 
The (X,Y) coordinates for each Z value in the data file 

are determined from the coordinates on the surface of the 
toroid which are defined in Fig. 4, and the Cartesian 
coordinates may be determined from the coordinates on 
the toroid by Eqs. (8)-(10), where R is the mean radius of 
the toroid and r0 is the radius of the tube of the toroid.   

 
 
 

 
 
 
 
 
 
 
 

Figure 4: Definition of toroidal coordinates. 
 

 
The equation for the path of the coil in a uniformly-

wound coil on the surface of the toroid is given by  

 
More generally, including non-uniform windings, the path 
of the coil is defined by  

 
Thus, by integrating, the equation for the path of the 
winding for a general set of coils may be defined by 
extending Eq. (3) as follows: 

 
Equation (13) may be inverted to derive the following 
expression which may be used to determine the series of 
values of θ at which the coil intersects each layer of the 
model: 
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Generating the Data File for Rapid Prototyping 
For each value of Z, corresponding to the height of a 

given layer of the model:  
(1) Generate a file of (X,Y) coordinates on a grid with a 

resolution equal to the incremental step-size for the 
Rapid Prototyping instrument, such that these points 
approximate the two circles where the smooth surface 
of the toroid has the specified Z, requiring that these 
points have evenly-spaced values of θ.    

(2) Define the inner circle, where π/2 < φ < 3π/2, and the 
outer circle, where 0 < φ < π/2, or 3π/2 < φ < 2π. 

(3) Determine the first values for φ on each circle: 
    Inner circle: φ = π – Sin-1(Z/r0)  
    Outer circle: φ = Sin-1(Z/r0) for Z > 0;  
                         φ = 2π + Sin-1(Z/r0) for Z < 0.  
(4) Use Eq. (14) to determine the corresponding values of 
θ where the coil crosses the inner and the outer circle.  

(5) Add 2π to φ and use Eq. (14) to determine the second 
pair of θ where the coil crosses the inner and the outer 
circles.   

(6) Continue step 5 to determine the subsequent values of 
θ until the argument of the inverse trigonometric 
function exceeds unity. Then use symmetry to 
determine the other values for θ on the rest of the way 
around the inner and the outer circles.  

(7) Change the data file that was generated in step 1 to 
include grooves in this layer of the model at the values 
of θ where the coil crosses the layer.   

SUMMARY AND CONCLUSIONS 
● It is possible to determine the magnitude and phase of 

the currents in a number of wires having known 
locations by measuring the voltages that are induced on 
an equal number of coaxial toroidal coils that have 
these currents passing through their common aperture.    

 
● This problem is equivalent to monitoring a continuous 

distribution of current that passes through a specified 
area which is divided into a number of pixels. These 
pixels must be small enough that the current is slowly 
varying within each of them. The well-known 
smoothing property of the integral operator makes a 
partial correction for the effects of the linear variation 
of the current within each pixel.   

 

● It is convenient to use matrix methods to determine the 
magnitudes and phases of the currents when the number 
of wires is an odd integer M = 2K +1, and the coils 
have the number of turns per unit length constant, and 
proportional to the sin(θ), cos(θ),  sin(2θ), cos(2θ), … , 
sin(Kθ), and cos(Kθ), respectively, where θ is the 
azimuthal coordinate.   

 
 ● When the pixels are evenly spaced on a single circle 

within the common aperture of a group of toroidal coils, 
the practical upper limit for the maximum number of 
pixels is set by the number of coils that can be used for 
the measurements and not by ill-conditioning of the 
matrix.  However, the maximum number of pixels that 
may be used is significantly reduced when the pixels 
are distributed over an area within the aperture.  
However, it is not necessary to have pixels in areas of 
the aperture where it is known that the current is 
negligible.   
 

● Rapid Prototyping methods have adequate precision for 
fabricating the group of coils, and the equations that are 
needed to generate the data files which are required for 
Rapid Prototyping have already been derived.   
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