Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPTPF019 | Streak-Camera Measurements with High Currents in PEP-II and Variable Optics in SPEAR3 | optics, lattice, impedance, synchrotron | 133 |
|
|||
A dual-axis, synchroscan streak camera was used to measure temporal bunch profiles in three storage rings at SLAC: the PEP-II low-energy and high-energy rings, and SPEAR3. At high currents, both PEP rings exhibit a transient shift in synchronous phase along the bunch train due to RF-cavity loading. Bunch length and profile asymmetry were measured along the train for a range of beam currents. To avoid the noise of a dual-axis sweep, we accumulated a single-axis synchroscan image over multiple turns while applying a 50-ns gate to the microchannel plate. To improve the extinction ratio, we synchronized this 2-kHz gate with an upstream mirror pivoting at 1 kHz to deflect light from other bunches off the axis. At SPEAR3 we compared the bunch length as a function of current for several lattices: achromatic, low-emittance and low momentum compaction. In the first two cases, resistive and reactive impedance components were extracted from the longitudinal bunch profiles. In the low-alpha configurations, we observed natural bunch lengths approaching the camera resolution, requiring special care to remove instrumental effects, and saw evidence of instability and periodic bursting. |
|||
TUPTPF047 | Creating a Pseudo Single Bunch at the ALS – First Results | kicker, closed-orbit, storage-ring, resonance | 213 |
|
|||
Typically storage ring light sources operate with the maximum number of bunches possible with a gap for ion clearing. The Advanced Light Source (ALS) has 2 nanoseconds between the bunches and typically operates with 276 bunches out of a possible 328. For experimenters doing timing experiment this bunch separation is too small and would prefer to see only one or two bunches in the ring. In order to provide more flexible operations and substantially increase the amount of operating time for time-of-flight experimenters, it is being proposed to kick one bunch on a different vertical closed orbit. By spatially separating the light from this bunch from the main bunch train in the beamline, one could potentially have single bunch operation all year round. By putting this bunch in the middle of the ion clearing gap the required bandwidth of the kicker magnets is reduced. Using one kicker magnet running at the ring repetition rate (1.5 MHz), this bunch could be permanently put on a different closed orbit. Using multiple kicker magnets, this bunch could be locally offset at an arbitrary frequency. This paper will show some first results using such a system. This work was supported by U.S. Department of Energy under Contract No. DE-AC03-76SF00098 |