Monte Carlo Mean Field Treatment of Microbunching Instability in the FERMI@Elettra First Bunch Compressor

Gabriele Bassi
Department of Physics, University of Liverpool and the Cockcroft Institute, UK

James A. Ellison*, Klaus Heinemann*
Department of Math and Stats, University of New Mexico, Albuquerque, NM, USA

Robert Warnock*
SLAC National Accelerator Laboratory, Menlo Park, CA, USA

Collaborator
Balša Terzić, NICADD, Department of Physics, Northern Illinois University, DeKalb, IL, USA

1. Self Consistent Vlasov-Maxwell Treatment
2. Field Calculation and Density Estimation
3. Microbunching Instability Studies
4. Discussion

* Work partially supported by DOE grants DE-FG02-99ER41104 and DE-AC02-76SF00515;

Particle Accelerator Conference, May 4-8, 2009, Vancouver, Canada
Basic Lab Frame Setup

\[E_{\parallel} = 0 \]
\[B_Y = 0 \]
Self Consistent Vlasov-Maxwell Treatment

3D Wave equation in lab frame with “2D” planar source:

\[
(\partial_Z^2 + \partial_X^2 + \partial_Y^2 - \partial_u^2)\mathcal{E} = H(Y)S(R, u), \quad \mathcal{E}(R, Y = \pm g, u) = 0.
\]

where \(u = ct \), \(\mathcal{E}(R, Y, u) = (E_Z, E_X, B_Y) \), \(R = (Z, X) \).

Vlasov equation in beam frame:

\[
f_s - \kappa(s)xf_z + F_zfp_z + p_xf_x + [\kappa(s)p_z + F_x]fp_x = 0
\]

where

\[
F_z = \frac{e}{v_tE_T}V \cdot E,
\]
\[
F_x = \frac{e}{E_T\beta^2} \left[-X'_T(s)E_Z + Z'_T(s)E_X - v_TB_Y \right],
\]

and \(V = v_T(t(s) + pxn(s)) \), \(E = (E_Z, E_X) \) and \(B_Y \) are evaluated at \(R = R_T(s) + xn(s) \) and \(u = (s - z)/\beta_T \).
Field Calculation and Density Estimation

Field formula:

\[E(R, u) := \int_{-g}^{g} H(Y) E(R, Y, u) dY \]

\[= -\frac{1}{2\pi} \sum_{k=0}^{\infty} a_k \int_{-\infty}^{u-kh} dv \int_{-\pi}^{\pi} d\theta S(\hat{R}, v, k) \]

where \(\hat{R} = R + \sqrt{(u - v)^2 - (kh)^2} (\cos \theta, \sin \theta) \) and \(a_k = (-1)^k (1 - \delta_{k0}/2) \).

- localization in \(\theta \) for \(v \ll u - kh \implies \int d\theta \) with superconvergent trapezoidal rule
- non uniform behavior in \(v \implies \int dv \) with adaptive Gauss-Kronrod rule

Density estimation: from scattered beam frame points at \(s \rightarrow \) smooth/global lab frame charge/current density via a 2D Fourier method.

1D Example: 1D orthogonal series estimator of \(f(x) \), \(x \in [0, 1] \)

\[f_J(x) := \sum_{j=0}^{J} \theta_j \phi_j(x), \quad \theta_j = \int_{0}^{1} \phi_j(x) f(x) dx, \quad \phi_0(x) = 1, \phi_j(x) = \sqrt{2} \cos(j\pi x), j = 1, 2, ... \]

Since \(f(x) \) is a probability density (\(X, X_n \) random variables distributed via \(f \))

\[\theta_j = E\{\phi_j(X)\}, \quad \text{thus from Monte Carlo a natural estimate is} \quad \hat{\theta}_j := \frac{1}{N} \sum_{n=1}^{N} \phi_j(X_n) \]
Beam to Lab Charge/Current Density Transformation

- To solve Maxwell equations in lab frame must express lab frame charge/current density in terms of beam frame phase space density
- To a good approximation lab frame charge/current densities are

\[
\rho_L(R, Y, u) = H(Y) \rho_B(r, \beta_r u),
\]
\[
J_L(R, Y, u) = \beta_r c H(Y) [\rho_B(r, \beta_r u) t(\beta_r u + z) + \tau_B(r, \beta_r u) n(\beta_r u + z)],
\]
\[
\rho_B(r, s) = Q \int dp_z dp_x f(\zeta, s), \quad \tau_B(r, s) = Q \int dp_z dp_x p_x f(\zeta, s),
\]

where \(\zeta = (z, p_z, x, p_x) \)

Remark: subtlety in the change of independent variable \(u = ct \to s \)

Derivation to be published in a forthcoming paper
Microbunching can cause an instability which degrades beam quality.

This is a major concern for free electron lasers where very bright electron beams are required.

FERMI@Elettra first bunch compressor system proposed as a benchmark for testing codes at the first Workshop on Microbunching Instability held in Trieste in 2007.
FERMI@Elettra First Bunch Compressor Parameters

Table 1: Chicane parameters and beam parameters at first dipole

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy reference particle</td>
<td>E_r</td>
<td>233</td>
<td>MeV</td>
</tr>
<tr>
<td>Peak current</td>
<td>I</td>
<td>120</td>
<td>A</td>
</tr>
<tr>
<td>Bunch charge</td>
<td>Q</td>
<td>1</td>
<td>nC</td>
</tr>
<tr>
<td>Norm. transverse emittance</td>
<td>$\gamma \epsilon_0$</td>
<td>1</td>
<td>μm</td>
</tr>
<tr>
<td>Alpha function</td>
<td>α_0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Beta function</td>
<td>β_0</td>
<td>10</td>
<td>m</td>
</tr>
<tr>
<td>Linear energy chirp</td>
<td>h</td>
<td>-12.6</td>
<td>1/m</td>
</tr>
<tr>
<td>Uncorrelated energy spread</td>
<td>σ_E</td>
<td>2</td>
<td>KeV</td>
</tr>
<tr>
<td>Momentum compaction</td>
<td>R_{56}</td>
<td>0.057</td>
<td>m</td>
</tr>
<tr>
<td>Radius of curvature</td>
<td>ρ_0</td>
<td>5</td>
<td>m</td>
</tr>
<tr>
<td>Magnetic length</td>
<td>L_b</td>
<td>0.5</td>
<td>m</td>
</tr>
<tr>
<td>Distance 1st-2nd, 3rd-4th bend</td>
<td>L_1</td>
<td>2.5</td>
<td>m</td>
</tr>
<tr>
<td>Distance 2rd-3nd bend</td>
<td>L_2</td>
<td>1</td>
<td>m</td>
</tr>
</tbody>
</table>
Initial spatial density in grid coordinates for $A=0.05$, $\lambda_0 = 100 \mu$m.

Init. phase space density $= (1 + A \cos(2\pi z/\lambda_0))\mu(z)\rho_c(p_z - hz)g(x, p_x)$.
Gain factor

Gain := $|\tilde{\rho}(k_f, s_f)/\tilde{\rho}(k_0, 0)|$, $\tilde{\rho}(k, s) = \int dz \exp(-ikz)\rho(z, s)$ and $k_f = C(s_f)k_0$

for $\lambda_0 = 2\pi/k_0$. Here $C(s_f) = 1/(1 + hR_{56}(s_f)) = 3.54$, $s_f = 8.029\text{m}$.

Spectra Longitudinal Density I

For $\lambda_0 = 300 \ \mu m$ ($k_0 = 20944 \ 1/m$), Gain = $0.0243/0.0240 = 1.0128$

- $s=0 \ m, A=0.05$
- $s=0 \ m, A=0$
- $(20944,0.0240)$

For $\lambda_0 = 600 \ \mu m$ ($k_0 = 10472 \ 1/m$), Gain = $0.0236/0.0176 = 1.3409$

- $s=0 \ m, A=0.05$
- $s=0 \ m, A=0$
- $(10472,0.0176)$

For $\lambda_0 = 300 \ \mu m$ ($k_0 = 20944 \ 1/m$), Gain = $0.0243/0.0240 = 1.0128$

- $s=8.028 \ m, A=0.05$
- $s=8.028 \ m, A=0$
- $(74247,0.0243)$

For $\lambda_0 = 600 \ \mu m$ ($k_0 = 10472 \ 1/m$), Gain = $0.0236/0.0176 = 1.3409$

- $s=8.028 \ m, A=0.05$
- $s=8.028 \ m, A=0$
- $(37123,0.0236)$
Monte Carlo Mean Field Treatment of \(\mu BI \) in the FERMI@Elettra BC1 / Gabriele Bassi

\textbf{Spectra Longitudinal Density II}

\(\lambda_0 = 100 \text{ } \mu \text{m} \) \((k_0 = 62832 \text{ } 1/\text{m}) \), Gain = 0.0649/0.0248 = 2.6169

\(\lambda_0 = 80 \text{ } \mu \text{m} \) \((k_0 = 78534 \text{ } 1/\text{m}) \), Gain = 0.0620/0.0248 = 2.5000

\(\lambda_0 = 60 \text{ } \mu \text{m} \) \((k_0 = 104720 \text{ } 1/\text{m}) \), Gain = 0.0593/0.0248 = 2.3870

\(\lambda_0 = 40 \text{ } \mu \text{m} \) \((k_0 = 157070 \text{ } 1/\text{m}) \), Gain = 0.0291/0.0248 = 1.1734

\(s=8.028 \text{ } \text{m}, A=0.05 \)
\(s=0 \text{ } \text{m}, A=0.05 \)
Monte Carlo Mean Field Treatment of μBI in the FERMI@Elettra BC1 / Gabriele Bassi

Longitudinal Density

$\lambda_0 = 100\mu m$ at $s = 0$ (top left), $\lambda_0 = 60\mu m$ at $s = s_f$ (bottom left), $\lambda_0 = 100\mu m$ at $s = s_f$ (top right), $\lambda_0 = 40\mu m$ at $s = s_f$ (bottom right).

Particle Accelerator Conference, May 4-8, 2009, Vancouver, Canada
\[\lambda_0 = 200 \mu \text{m}. \]

\(s = 0.25 s_f \) (top left), \(s = 0.5 s_f \) (top right), \(s = 0.75 s_f \) (bottom left), \(s = s_f \) (bottom right).
2D spatial density and longitudinal force at $s = s_f$

$\lambda_0 = 200\mu m$ (top left), $\lambda_0 = 100\mu m$ (top right), $\lambda_0 = 200\mu m$ (bottom left), $\lambda_0 = 100\mu m$ (bottom right)
• FERMI@Elettra microbunching studies at $\lambda_0 \geq 40\mu m$:
 - Very small effect of μBI on mean power and transverse emittance
 - Gain factor at long wavelengths shows breakdown coasting beam assumption
 - Gain factor at short wavelengths indicates deviations from analytical gain formula
 - A paper has been submitted to PRSTAB

• Work in progress and future work:
 - Study wavelengths shorter than $\lambda_0 = 40\mu m$
 - Study dependence on the amplitude of the initial modulation and on the uncorrelated energy spread
 - Study initial perturbation with more than one frequency
 - Complete studies for benchmark microbunching instability including RF cavities
Computational Issues

- Intensive memory requirement and expensive computational cost:
 - Typical simulations done on the parallel clusters ENCANTO in New Mexico and NERSC at LBNL: N procs = 200-1000, N particles = 2×10^7-5×10^8, few hours of CPU time
 - Memory requirement: for $\lambda_0 = 50 \mu m$ store 3D array of dimension $1500 \times 128 \times 200$ on master processor (to avoid massive communications between slave processors)

- To reduce storage/computational cost:
 - Analytical work + state of the art numerical techniques: integration, interpolation, density estimation
 - Parallel computing
Monte Carlo Mean Field Treatment of μBI in the FERMI@Elettra BC1

Gabriele Bassi

FERMI@Elettra First Bunch Compressor II

Particle Accelerator Conference, May 4-8, 2009, Vancouver, Canada
Monte Carlo Mean Field Treatment of μBI in the FERMI@Elettra BC1 / Gabriele Bassi

Particle Accelerator Conference, May 4-8, 2009, Vancouver, Canada
2D spatial density in grid coordinates at $s = s_f$ for $\lambda_0 = 200 \mu m$
2D spatial density in grid coordinates at $s = s_f$ for $\lambda_0 = 100\mu m$
2D spatial density in grid coordinates at $s = s_f$ for $\lambda_0 = 80 \mu m$
Longitudinal force in grid coordinates at $s = s_f$ for $\lambda_0 = 200\mu m$
Longitudinal force in grid coordinates at $s = s_f$ for $\lambda_0 = 100\mu m$.
Longitudinal force in grid coordinates at $s = s_f$ for $\lambda_0 = 80\mu m$