PAMELA OVERVIEW: Design Goals and Principles

Ken Peach
John Adams Institute for Accelerator Science &
Particle Therapy Cancer Research Institute

Paper TH4GAC03/PAC09 Vancouver

On behalf of the PAMELA Design Team:
John Cobb, Suzanne Sheehy, Holger Witte, Takeichiro Yokoi
(RAL, Oxford)
Richard Fenning, Akram Khan
(Brunel University, UK)
Rebecca Siewiorek (Cockcroft Institute, Lancaster, UK)
Carol Johnstone (Fermilab, USA)
Mark Hill, Bledwyn Jones*, Borivoj Vojnovic
(Gray Institute for Radiation Oncology and Biology, Oxford, UK)
Morteza Aslaninejad, Matt Easton, Jaroslaw Pasternak
(Imperial College, UK)
Jürgen Pozdnski (Imperial College and STFC/RAL, UK)
Neil Bliss, Carl Beard, Peter McIntosh, Susan Smith,
Stephan Tzenov (STFC/RL, UK)
Rob Edgecock, David Kelliher, Shinji Machida,
James Rochford (STFC/RAL, UK)
Roger Barlow, Hywel Owen, Sam Tygier
(University of Manchester, UK)

Work supported by the UK Basic Technology Fund grant number EPSRC EP/E032869/1
* Part of the James Martin 21st Century School, University of Oxford

http://www.adams-institute.ac.uk http://www.ptcri.ox.ac.uk
Ken.Peach@adams-institute.ac.uk Ken.Peach@ptcri.ox.ac.uk
Outline

PAMELA
Particle Accelerator for Medical Applications

- Clinical Requirements
- Accelerator Technologies
- PAMELA – status
- Summary
Clinical Requirements

• Charged Particle Therapy (CPT)
 – Protons and light ions
 – Used to treat localised cancers
 • Less morbidity for healthy tissue
 • Less damage to vital organs
 • Particularly for childhood cancers

With X-rays
Clinical Requirements

- Charged Particle Therapy (CPT)
 - Protons and light ions
 - Used to treat localised cancers
 - Less morbidity for healthy tissue
 - Less damage to vital organs
 - Particularly for childhood cancers
Clinical Requirements

- Charged Particle Therapy (CPT)
 - Protons and light ions
 - Used to treat localised cancers
 - Less morbidity for healthy tissue
 - Less damage to vital organs
 - Particularly for childhood cancers

“When proton therapy facilities become available it will become malpractice not to use them for children [with cancer].”

Herman Suit, M.D., D.Phil., Chair, Radiation Medicine, Massachusetts General Hospital
CPT – why?

SOBP

10MV photon

Pristine peak
Main Clinical Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction energy (proton) [Min, Max]</td>
<td>60, 240</td>
<td>MeV</td>
</tr>
<tr>
<td>Extraction energy (carbon) [Min, Max]</td>
<td>110, 450</td>
<td>MeV/u</td>
</tr>
<tr>
<td>Energy step (protons) [@Min, @Max]</td>
<td>5, 1</td>
<td>MeV</td>
</tr>
<tr>
<td>Energy step (carbon) [@Min, @Max]</td>
<td>15, 6</td>
<td>MeV/u</td>
</tr>
<tr>
<td>Energy resolution $\Delta E/E$ [@Min, @Max]</td>
<td>3.5, 1.8</td>
<td>%</td>
</tr>
<tr>
<td>Voxel Size [Min, Max]</td>
<td>4x4x4</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>10x10x10</td>
<td></td>
</tr>
<tr>
<td>Smallest Field of view [Min, Max]</td>
<td>100x100</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>250x250</td>
<td></td>
</tr>
<tr>
<td>Clinical Dose rate (protons) [Min, Max]</td>
<td>2, >10</td>
<td>Gy/min</td>
</tr>
<tr>
<td>Clinical Dose rate (carbon) [Min, Max]</td>
<td>2, >10</td>
<td>Gy/min</td>
</tr>
<tr>
<td>Cycle rate [Min, Max]</td>
<td>0.5, 2</td>
<td>kHz</td>
</tr>
<tr>
<td>Bunch charge (protons) [Min, Max]</td>
<td>1.6 - 16</td>
<td>pC</td>
</tr>
<tr>
<td>Bunch charge (carbon) [Min, Max]</td>
<td>300 - 3000</td>
<td>fC</td>
</tr>
<tr>
<td>Bunch charge stability and bunch charge</td>
<td><10</td>
<td>%</td>
</tr>
<tr>
<td>measurement accuracy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Main Clinical Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction energy (proton) [Min, Max]</td>
<td>60, 240</td>
<td>MeV</td>
</tr>
<tr>
<td>Extraction energy (carbon) [Min, Max]</td>
<td>110, 450</td>
<td>MeV/u</td>
</tr>
<tr>
<td>Energy step (protons) [@Min, @Max]</td>
<td>5, 1</td>
<td>MeV</td>
</tr>
<tr>
<td>Energy step (carbon) [@Min, @Max]</td>
<td>15, 6</td>
<td>MeV/u</td>
</tr>
<tr>
<td>Energy resolution ΔE/E [@Min, @Max]</td>
<td>3.5, 1.8</td>
<td>%</td>
</tr>
<tr>
<td>Voxel Size [Min, Max]</td>
<td>4x4x4</td>
<td>mm</td>
</tr>
<tr>
<td>Smallest Field of view [Min, Max]</td>
<td>100x100</td>
<td>mm</td>
</tr>
<tr>
<td>Clinical Dose rate (protons) [Min, Max]</td>
<td>2, >10</td>
<td>Gy/min</td>
</tr>
<tr>
<td>Clinical Dose rate (carbon) [Min, Max]</td>
<td>2, >10</td>
<td>Gy/min</td>
</tr>
<tr>
<td>Cycle rate [Min, Max]</td>
<td>0.5, 2</td>
<td>kHz</td>
</tr>
<tr>
<td>Bunch charge (protons) [Min, Max]</td>
<td>1.6 - 16</td>
<td>pC</td>
</tr>
<tr>
<td>Bunch charge (carbon) [Min, Max]</td>
<td>300 - 3000</td>
<td>fC</td>
</tr>
<tr>
<td>Bunch charge stability and bunch charge</td>
<td><10</td>
<td>%</td>
</tr>
<tr>
<td>measurement accuracy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatment Plan should be determined by clinical need not limited by Accelerator Technology
Accelerator Technology?

- **Cyclotrons**
 - Fixed energy extraction, difficult for Carbon at full energy (equivalent to 1.2 GeV/c protons)

- **Synchrotrons**
 - Flexible, but too slow?

- **FFAG**
 - Flexible, rapid cycling (fixed field), variable energy ... but ... new technology
 - Scaling (Mori) & non-Scaling (Johnstone, PAMELA)

- **(Compact) Linear Accelerators**
 - e.g. Dielectric Wall Accelerators

- ...

- **Laser-Plasma Ion accelerators**
 - Far in the future ...
Challenges

- The non-scaling Fixed-Field Alternating Gradient Accelerator is a new type of accelerator
 - Lattice?
 - Magnets, injection/extraction
 - Challenging RF
 - Resonance crossing?
 - Stability
- EMMA is a relativistic ns-FFAG
- PAMELA is a non-relativistic ns-FFAG

See Marks: TU1RAI02 Witte et al. MO6PFP073
See Smith: WE4PBI01
Solutions

1. (Johnstone & Koscielniak)
 - Use wedge-shaped magnets
 - Stabilize betatron tune
 - Longer straight sections

2. (Machida)
 - Introduce higher multipoles
 - Stabilize betatron tune
 - Longer straight sections

S. Machida, “FFAGs for proton acceleration”, FFAG’08 workshop, Manchester, 2008
A Johnstone/Koscielniak lattice
PAMELA

STATUS

http://www.adams-institute.ac.uk http://www.ptcri.ox.ac.uk
Ken.Peach@adams-institute.ac.uk
Ken.Peach@ptcri.ox.ac.uk
Present Lattice – Proton Ring

- Proton ring (30 to 250 MeV)
 - Carbon requires second ring
 - Work in progress
- non-scaling, non-linear lattice
 - Tune-stabilisation
- Principle idea:
 - Start with scaling FFAG
 - Relax scaling law
 - Rectangular CF magnets
 - Aligned on straight line
 - Multipoles up to octupole
 - Results in FFAG with...
 - Small orbit excursion (<172 mm)
 - Compact magnets
 - No/little tune shift
- 12 cells, FDF-triplet
 - Straights: 1.7 m
 - Sufficient space
 - Injection/extraction
 - RF

See Sheehy et al, FR5PF001
Present Lattice – Proton Ring

- **Proton ring (30 to 250 MeV)**
 - Carbon requires second ring
 - Work in progress
- **non-scaling, non-linear lattice**
 - Tune-stabilisation
- **Principle idea:**
 - Start with scaling FFAG
 - Relax scaling law
 - Rectangular CF magnets
 - Aligned on straight line
 - Multipoles up to octupole
 - Results in FFAG with...
 - Small orbit excursion (<172 mm)
 - Compact magnets
 - No/little tune shift
- **12 cells, FDF-triplet**
 - Straights: 1.7 m
 - Sufficient space
 - Injection/extraction
 - RF

See Smith: WE4PBI01

See Sheehy et al, FR5PP001
Present Lattice – Proton Ring

- Proton ring (30 to 250 MeV)
 - Carbon requires second ring
 - Work in progress

- non-scaling, non-linear lattice
 - Tune-stabilisation

- Principle idea:
 - Start with scaling FFAG
 - Relax scaling law
 - Rectangular CF magnets
 - Aligned on straight line
 - Multipoles up to octupole
 - Results in FFAG with...
 - Small orbit excursion (<172 mm)
 - Compact magnets
 - No/little tune shift

- 12 cells, FDF-triplet
 - Straights: 1.7 m
 - Sufficient space
 - Injection/extraction
 - RF

See Sheehy et al, FR5PFP001

<table>
<thead>
<tr>
<th>Packing Factor</th>
<th>No. cells</th>
<th>Radius</th>
<th>Orbit Excursion</th>
<th>Straight Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>12</td>
<td>6.251 m</td>
<td>0.172 m</td>
<td>1.702 m</td>
</tr>
</tbody>
</table>
Working Point and Tunes

- **Working point**
 - High k
 - minimize orbit excursion

- **Machine tune variation**
 (cell tune variation*12):
 - v_x within 0.116
 - v_y within 0.655
 - Well within an integer!

- **Beam blow up**
 - Linear lattice:
 - Amplification factor 360
 - Non-linear lattice:
 - Amplification factor 7.6
 \[A = \frac{\text{orbit distortion [mm]}}{1\sigma \text{ alignment error [mm]}} \]

- **Achievable tolerances**

See Sheehy et al, FR5PFP001
Magnet Requirements

- Non-scaling, non-linear FFAG
 - Multipoles up to octupole
- Challenges
 - Maximum field (4.25T)
 - Length restriction (314 mm)
 - Required bore (>250 mm)
- Magnet options
 - n/c Iron cored magnets
 - Superferric coils
 - S/C $\cos(\theta)$ magnets
 - S/C Double-helix coils

Choose: Double-helix coils

See Witte et al, MO6PFP073
Double-Helix Principle

Current density:

Helix 1
- \(J_x : \frac{J_x}{J_0} = -R \sin(\Theta) \)
- \(J_y : \frac{J_y}{J_0} = R \cos(\Theta) \)
- \(z : \frac{J_z}{J_0} = \frac{nR}{\tan \alpha} \cos(n\Theta) \)

Helix 2
- \(J_x : \frac{J_x}{J_0} = R \sin(\Theta) \)
- \(J_y : \frac{J_y}{J_0} = -R \cos(\Theta) \)
- \(z : \frac{J_z}{J_0} = -\frac{nR}{\tan(-\alpha)} \cos(n\Theta) \)

Double-Helix

\(J_x = 0 \)
\(J_y = 0 \)
\(J_z = \text{const} \cos(n\Theta) \)

Double-helix coil:
Smart way of creating a cosine-theta magnet
Main advantage for PAMELA: No coil end problem

See Witte et al, MO6PFP073
Example: PAMELA F Magnet

- Combined function magnet
 - One double-helix coil/multipole

- Solutions for all multipoles (F and D)
 - Length: ~560 mm
 - Bore: 280 mm
 - NbTi at 4.2K
 Cu:Sc ratio 1.3:1 and 2:1
 - Temperature margins: >1.5K
 - Mechanical stresses OK

- Field quality:
 - better than 3×10^{-4}

See Witte et al, MO6PFP073
RF System

- 1kHz repetition rate ~ 100kV/turn
- Drift space ~1.7m
- Target energy gain:
 - ~16kV/turn/cavity
- Challenges:
 - duty cycle, Modulation, gradient
- Ferrite loaded cavity
 - baseline: ISIS 2nd harm. cavity
 - Relatively high Q (~100)
 - sufficient accelerating field
 - h=10 ?
 - heat load @ 1kHz ~100kW/cavity
- Development started
 - Ferrite property measurement
 - Q-value, FM rate dependence

See Yokoi et al, WE5PFP011
Ion sources

Carbon RFQ Parameters

- E-field frequency 200MHz
- E_1 8 keV/u
- E_0 382 keV/u
- Transmission 75%
- RFQ length 2.4m
- Electrode potential 80 kV

See Easton et al MO6RFP029, FR5REP066
PAMELA: Beam extraction

- **Kicker system**
 - Work in progress

- **Difficulty: horizontally distributed beam**
 - Studying vertical extraction

- **Advantages over horizontal extraction**
 - weaker field
 - $<0.6 \text{kG} \sim 1 \text{m}$ (hor: 2.9kG)
 - Peak voltage:
 - 15kV (hor: 223kV for movable C-type)

- **R&D issues**
 - Large aspect ratio kicker (185x26 mm2)
 - kicker inductance?
 - Kicker reliability
 - @1 kHz, 10h/day, 5d/week $\sim 10^8$ pulses/y
 - Scaling to carbon ring
 - high current PS
Beam Transport and Gantry

45° bends

FFAG-like achromatic beam transport & gantry

See Fenning et al TH6PFP022

Pamela

FDDF cell 1.6m long:
B_z F = 2.0T & D = 3.0T (k=5)

~10m

Treatment rooms

\[\beta (m) \]

\[\beta y, \beta z \]

\[S (cm) \]

\[Y (cm) \]

\[S (cm) \]

0.25
0.5
0.75

Ken Peach (John Adams Institute & PTCRI, Oxford) PAMELA OVERVIEW [TH46AC03] PAC09, Vancouver 7 May 2009 19
Next steps

1. Complete the proton ring design
2. Develop the carbon ring
3. Develop beam transport & gantry
4. Seek component prototype funding
 • Main ring magnets
 • RF
 • Kickers
 • Carbon RFQ
5. Seek machine funding
 • Demonstrator for CPT
Summary

- The conceptual design of a Charged Particle Therapy (protons and light ions) accelerator using a non-linear non-scaling FFAG is well advanced
 - A realistic lattice design exists (proton)
 - Feasible magnets & RF
 - Ion source, injection, extraction and beam transport
 - Under investigation
 - Gantry & carbon ring
 - Still to be done