RHIC Progress and Future

Christoph Montag, BNL
Delivered Luminosity and Polarization

RHIC nucleon-pair luminosity L_{NN} delivered to PHENIX

Nucleon pair luminosity L_{NN} [pb$^{-1}$]

Calendar year

$P=34\%$, $P=46\%$, $P=60\%$, $P=45\%$

Last update: 10 March 2008
Achieved RHIC Parameters

<table>
<thead>
<tr>
<th>mode</th>
<th>no. of bunches</th>
<th>ions/bunch $[10^9]$</th>
<th>β^* [m]</th>
<th>pol. %</th>
<th>$L_{\text{store avg.}}$ [cm$^{-2}$sec$^{-1}$]</th>
<th>$A_1A_2L_{\text{store avg.}}$ [cm$^{-2}$sec$^{-1}$]</th>
<th>$A_1A_2L_{\text{peak}}$ [cm$^{-2}$sec$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au-Au</td>
<td>103</td>
<td>1.1</td>
<td>0.8</td>
<td></td>
<td>$12 \cdot 10^{26}$</td>
<td>$46 \cdot 10^{30}$</td>
<td>$120 \cdot 10^{30}$</td>
</tr>
<tr>
<td>Cu-Cu</td>
<td>37</td>
<td>4.5</td>
<td>0.9</td>
<td></td>
<td>$80 \cdot 10^{26}$</td>
<td>$32 \cdot 10^{30}$</td>
<td>$79 \cdot 10^{30}$</td>
</tr>
<tr>
<td>d-Au</td>
<td>103</td>
<td>100/1.0</td>
<td>0.85</td>
<td></td>
<td>$13 \cdot 10^{28}$</td>
<td>$51 \cdot 10^{30}$</td>
<td>$99 \cdot 10^{30}$</td>
</tr>
<tr>
<td>\bar{p}-\bar{p} 100 GeV</td>
<td>111</td>
<td>1.35</td>
<td>1.0</td>
<td>60</td>
<td>$20 \cdot 10^{30}$</td>
<td>$20 \cdot 10^{30}$</td>
<td>$35 \cdot 10^{30}$</td>
</tr>
</tbody>
</table>

Nucleon-pair luminosity A_1A_2L treats nucleons of nuclei independently and allows for comparison of luminosities of different species.
New Developments I: $\bar{p}-\bar{p}$ at 250 GeV

Two full Siberian snakes to overcome ≈ 1000 depolarizing resonances in RHIC

Two partial Siberian snakes in AGS
Intrinsic spin resonances up to 250 GeV

Beyond 100 GeV, resonances are two times stronger then below 100 GeV

Image courtesy of Mei Bai
Store polarization vs. injected polarization

Average polarization at store (without rotators) is 42%, after 50% at injection

Image courtesy of Mei Bai
New Developments II: Low-energy Au-Au

- Search for critical point of nuclear phase transition
- Energy scan between 2.5 GeV/n and 25 GeV/n
- Two different beam energies tested so far, 4.6 GeV/n and 2.5 GeV/n.
- Different harmonic numbers due to limited tunability of RHIC RF: $h = 366$ at 4.6 GeV/n, $h = 387$ at 2.5 GeV/n.
- Defocusing sextupoles at opposite polarity to compensate dipole b_2.
- Low-energy physics run planned for 2010.
Beam lifetimes at 4.6 GeV/n

2008 blue beam lifetime: 3.5 min (fast), 50 min (slow)
High luminosity with electron cooling of low energy Au beams in RHIC in the future

Image courtesy of Todd Satogata
Beam activity at 2.5 GeV/n

Beam lifetime: 1 min (fast), 10 min (slow)
Blue ring unavailable due to power supply failure

Image courtesy of Todd Satogata
Intensity Limitation I: Dynamic Pressure Rise

Dynamic pressure rise during beam injection, caused by electron clouds

Vacuum system upgrades:

- Installed 500 m of NEG coated pipes in warm sections
- Reduced pressure in cold sections to 10^{-7} Torr before cool-down

Image courtesy of Thomas Roser
Beam scrubbing

- After six hours of scrubbing with high intensity beams at injection, pressure rise at cavities is factor 13 lower than before

- Improved beam lifetime at injection

Image courtesy of Haixin Huang
Intensity Limitation II: Fast Instability Near Transition

- Fast transverse instability, growth time \(\approx 15 \text{ msec} \)
- High sensitivity around transition due to required zero-crossing of chromaticities
- Effect of broadband impedance and electron clouds
- Cures: octupoles, adjust crossing time of zero chromaticity, suppress electron clouds, chromaticity jump
Luminosity Lifetime Improvement I: IBS lattice

Limited luminosity lifetime requires frequent refills

Increased focusing decreases IBS rate:

\[
\tau_{\parallel}^{-1} \approx \frac{r_i c N_i \Lambda}{8 \beta^3 \gamma^3 \epsilon_x^{3/2} \langle \beta_{\perp}^{1/2} \rangle \sigma_x \sigma_p^2}
\]

\[
\tau_x^{-1} = \frac{\sigma_p^2}{\epsilon_x} \left\langle \frac{D_x^2 + (D'_x \beta_x + \alpha_x D_x)^2}{\beta_x} \right\rangle \tau_{||}^{-1}
\]

\[
\mathcal{H} = \gamma_x D_x^2 + 2 \alpha_x D_x D_x' + \beta_x D_x'^2
\]

Reducing \(\mathcal{H} \) by higher phase advance in FODO cells reduces transverse IBS rate

Ultimately will need full energy cooling
Experimental results for $\phi = 92^\circ$ phase advance

Blue: Simulation with $\phi = 82^\circ$

Green: Simulation with $\phi = 92^\circ$

Red: Measured emittance, at $\phi = 92^\circ$

Image courtesy of Alexei Fedotov
Luminosity Lifetime Improvement II: Stochastic Cooling
Longitudinal bunch profile evolution

Red: Simulation
Blue: Measurement

Image courtesy of Mike Blaskiewicz
Effect of longitudinal stochastic cooling on Yellow beam lifetime

IBS leads to debunching; debunched particles continuously removed from abort kicker gap

Image courtesy of Mike Brennan
Luminosity Lifetime Improvement III: 56 MHz SRF

- Shorter bunches in conjunction with stochastic cooling
- Scheduled for 2012

Image courtesy of Mike Blaskiewicz
Proton beam lifetime is limited by beam-beam effect; bunches with one collision have longer lifetime than bunches with two. Image courtesy of Wolfram Fischer
Idea:

- Compensating one collision point by an electron lens in each beam increases lifetime
- Tune footprint shrinks due to beam-beam compensation
- Allows for higher intensities/larger beam-beam tuneshift; therefore higher luminosity
- Scheduled for 2011

Image courtesy of Wolfram Fischer
Proton Luminosity Limitation II: 10 Hz Orbit Oscillations

- Both beams oscillate at ≈ 10 Hz, caused by helium flow driven mechanical triplet vibrations

- Modulated beam-beam offsets may lead to emittance growth

- Enhanced beam jitter prevents running at near-integer tunes, where a larger beam-beam parameter could be reached
Active mechanical damping system to stabilize triplet vibrations

- Based on geophones or accelerometers as vibration sensors, and electro-mechanical actuators outside the cryostat
- One test setup at a single cold mass in one triplet
- Alternative design: fast orbit feedback based on mechanical vibration measurements
- To be installed on all cold masses in both low-β IRs over next few years, beginning in summer shutdown 2009

Images courtesy of Peter Thieberger
Vibration spectra of one triplet cold mass, with and without active damping

Image courtesy of Peter Thieberger
Future Upgrades I: EBIS

- Currently, all ions other than protons are injected into Booster by two Tandem Van-de-Graaffs some 800 m away.
- Tandem maintenance is costly due to many mechanical parts.
- Electron-beam ion source (EBIS) at the existing 200 MeV linac will replace the Tandems.
• Any ion species can be generated at any desired charge state

• Pulse-to-pulse switching of species possible – important for parallel running with Nasa Space Radiation Lab (NSRL) at Booster

• Under construction, CD-4 scheduled for September 2010

Image courtesy of Jim Alessi
Future Upgrades II: eRHIC

- RHIC-based electron-ion collider with 10 – 20 GeV polarized electrons on 250 GeV protons, or 100 GeV/n ions
- \(\mathcal{L} = 10^{33} – 10^{34} \text{ cm}^{-2}\text{sec}^{-1} \)
- Main design: ERL-based linac-ring scheme
- Fallback: ring-ring scheme
Staged approach towards eRHIC

- 4 GeV ERL to be installed in IR2, colliding with 250 GeV polarized protons in RHIC
- Installation almost entirely in existing RHIC tunnel and detector building, to reduce cost of civil engineering
- Almost all hardware could be re-used in full-scale eRHIC

Image courtesy of Vladimir Litvinenko
Future Upgrades III: Coherent Electron Cooling

- Suggested almost 30 years ago by Y. Derbenev

- High gain FEL amplification at optical wavelengths makes it feasible

Image courtesy of Vladimir Litvinenko
Proof-of-principle experiment at RHIC

• Installation in one RHIC IR
• Utilizes BNL Test-ERL
• Demonstrate coherent electron cooling of 40 GeV proton beam in 2012

Image courtesy of Vladimir Litvinenko
Summary

• RHIC performance has continuously improved over past 9 years

• Future performance improvements require upgrades that are currently under way

• Converting RHIC into an electron-ion collider seems a natural next big step

• RHIC has a bright, exciting future