SKA Overview

World’s Largest Radio Telescope

SKA Phase 1 comprised of:

Mid-Frequency Dishes

Located in South Africa

- 64 x 13.5m MeerKAT Dishes
- 133 x 15m SKA Dishes
- 350 MHz – 13.8GHz Freq. Range
- Core diameter ~1km
- 3 x spiral arms radius ~100km
- Offset-Gregorian design
SKA Overview

World’s Largest Radio Telescope

SKA Phase 1 comprised of:

Low-Frequency Aperture Array

Located in Australia

- ~131,000 Antenna Elements
- Dual-polarised, log-periodic
- 50 MHz – ~350MHz Freq. Range
- Core diameter ~1km
- 512 stations 35m diameter each
- Stations spread over 40km radius
SKA Elements
TM Consortium

Self Funded Partners

- Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia
- Engage SKA Consortium, Portugal
- GTD GmbH, Germany
- National Centre for Radio Astrophysics (NCRA), India
- National Institute for Astrophysics (INAF), Italy
- National Research Council of Canada (NRC), Canada
- Science and Technologies Facilities Council (STFC), UK
- SKA South Africa (SKA SA), South Africa

Industry Partners

- Persistent Systems Limited (PSL), India
- SCISYS UK Ltd, UK
- Tata Consultancy Services (TCS), India
TM Primary Responsibilities

Management of Astronomical Observations

Management of Telescope Hardware & Software Subsystems

Management of the Data to Support Operations and all Stakeholders
TM Development Plan

Pre-Construction

CoDR
Consortia
PDR
Delta PDR
CDR
Construction

2011
2013 (Nov)
2015 (Jan)
2015 (Oct)
2017 (Mar)
2018

Construction

Construction
Verification
Early Science
Full Science
Utilisation

2018
2023

CDR – Critical Design Review
PDR – Preliminary Design Review
CoDR – Concept Design Review
TM Development Plan

Pre-Construction

CoDR 2011
Consortia 2013 (Nov)
PDR 2015 (Jan)
Delta PDR 2015 (Oct)
CDR 2017 (Mar)
Construction 2018

Construction

2018

Verification
Early Science
Full Science
Utilisation

2023

CDR – Critical Design Review
PDR – Preliminary Design Review
CoDR – Concept Design Review
TM Development Plan

CoDR 2011
Consortia 2013 (Nov)
PDR 2015 (Jan)
Delta PDR 2015 (Oct)
CDR 2017 (Mar)
Construction 2018

Pre-Construction

Construction

Construction 2018
Verification 2018
Early Science 2018
Full Science 2018
Utilisation 2023

CDR – Critical Design Review
PDR – Preliminary Design Review
CoDR – Concept Design Review
• Responsive, collaborative...deep understanding of key design issues;

• High quality PDR data pack;

• Technology choices were outstanding;

• Telescope level operations concept was immature;

• ‘Rebaselining’ needed to be considered;

• Graphical user interface (GUI) design and scripting approach was immature;
TM PDR Outcome

- Responsive, collaborative...deep understanding of key design issues;
- High quality PDR data pack;
- Technology choices were outstanding;
- Telescope level operations concept was immature;
- ‘Rebaselining’ needed to be considered;
- Graphical user interface (GUI) design and scripting approach was immature;
TM Development Plan

CoDR 2011
Consortia 2013 (Nov)
PDR 2015 (Jan)
Delta PDR 2015 (Oct)
CDR 2017 (Mar)
Construction 2018

Construction

Verification 2018
Early Science
Full Science
Utilisation 2023

CDR – Critical Design Review
PDR – Preliminary Design Review
CoDR – Concept Design Review
TM Development Plan

Pre-Construction

CoDR 2011
Consortia 2013 (Nov)
PDR 2015 (Jan)
Delta PDR 2015 (Oct)
CDR 2017 (Mar)
Construction 2018

Construction

Construction Verification Early Science Full Science Utilisation

2018 2018 2018 2018 2023

CDR – Critical Design Review PDR – Preliminary Design Review CoDR – Concept Design Review
TM Development Plan

CoDR (Concept Design Review) – 2011
Consortia – 2013 (Nov)
PDR (Preliminary Design Review) – 2015 (Jan)
Delta PDR – 2015 (Oct)
CDR (Critical Design Review) – 2017 (Mar)
Construction – 2018

Construction

Construction – 2018
Verification
Early Science
Full Science
Utilisation – 2023

CDR – Critical Design Review
PDR – Preliminary Design Review
CoDR – Concept Design Review
TM Development Plan

Pre-Construction

CoDR 2011
Consortia 2013 (Nov)
PDR 2015 (Jan)
Delta PDR 2015 (Oct)

CDR 2017 (Mar)
Construction 2018

Construction 2018
Verification
Early Science
Full Science
Utilisation

2023

CDR – Critical Design Review
PDR – Preliminary Design Review
CoDR – Concept Design Review
Future Milestones

- Development Baseline Formed: **4th Qrt 15**
- Rebaselining changes implemented: **4th Qrt 15**
- Element Level RBL / DBL: **2nd Qrt 16**
- Prototyping Report: **2nd Qrt 16**
- Sub Element Level RBL / DBL: **3rd Qrt 16**
- Application Level RBL / DBL: **1st Qrt 17**
- CDR Submission: **1st Qrt 17**
- CDR Closure: **3rd Qrt 17**

CDR – Critical Design Review
RBL – Requirements Baseline
DBL – Design Baseline
RISKS

• Dependency on Operations Concept Documents
• Dependency on Telescope Level Architecture Pack
• Scope and boundaries regarding Enterprise functionality unclear
• Uncertainty in ability to align with the construction assembly, integration and verification (AIV) schedule
• Assumptions made in the interim to continue development
• Next 6-9 months critical
Telescope Manager Tools

- **JIRA**
- **Alfresco**
- **eB**
- **Google Drive**
- **CAMEO Systems Modeler**

Abbreviations:
- **CDR** – Critical Design Review
- **RBL** – Requirements Baseline
- **DBL** – Design Baseline
Conclusion

• Telescope Manager is an integral part of the SKA Observatory.
• Telescope Manager is responsible for observation, telescope and data management.
• Significant progress has been made in developing the TM since project kick-off in Nov 13.
• Most notably, the Delta PDR has been PASSED in the last week.
• Detailed Design and Prototyping are current focus areas.
• Risks still expose the Telescope Manager, next 6-9 months are critical
Questions