Improving the Compact Muon Solenoid Electromagnetic Calorimeter Control and Safety Systems for the Large Hadron Collider Run 2

D. Di Calafiore1, P. Adzic2, P. Cirkovic2, G. Dissertori1, L. Djambazov1, O. Holme1, D. Jovanovic2, W. Lustermann1, S. Zelepoukine3

1) ETH Zurich, Switzerland
2) University of Belgrade, Serbia
3) University of Wisconsin, USA

On behalf of the CMS Collaboration

The CMS ECAL Detector Control System

- Based on the WinCC Open Architecture software package
- Uses Joint Controls Project (JCoP) and CMS frameworks
- 3-level access control (MONITOR / OPERATOR / EXPERT)
- Applications archive / retrieve data from central databases
- Alerts and protective automatic actions at all system levels

Remote reset of CAEN mainframes

- Arduino Ethernet with Modbus-TCP implementation
- 14 ports per unit, providing TTL output signals
- Heartbeat to ensure the unit availability
- Adjustable pulse length for available reset modes
- Easy integration with the detector control system
- Reduction of intervention time from >30min to <10min
- Proven effectiveness in production environment

Improved PTM ELMB power distribution

- ELMB-based readout of 516 NTC thermistors
- Original ELMB powering scheme:
 - Single set of 3x 12V power supplies for all ELMBs
 - No easy way to disconnect an individual power line
 - Single failure could degrade the complete system

- Improved power distribution:
 - Two sets of 3x 12V power supplies, one for each detector half
 - Terminal blocks with switches and fuses per power line
 - Failures can be easily isolated at the CMS service cavern level

*) 4x dual-channel 16-port MUX for serial line switching
* 4x dual-channel 16-port MUX for serial line switching
* Arduino Yún with Modbus-TCP implementation
* SIEMENS PLCs
* Arduino Ethernet with Modbus-TCP implementation
* Arduino Ethernet with Modbus-TCP implementation

ES BV monitoring

- Largest ELMB-based system in the CMS ECAL (80 ELMBs)
- Monitors currents of 2216 individual bias voltage lines
- Readout of currents based on simple resistor networks
- Readout channels calibrated for precision better than 2%
- Important for identifying individual increases of currents
- Easy integration with the detector control system
- Problem when working in a multiple ground configuration

Safety system preparation for Run 2

- Preventive maintenance performed regularly
- Protection to prevent users from setting unsafe thresholds
- Annual interlock tests for complete system verification
- CPUs replaced by newer models to ensure support until 2022
- Software mechanism for recovering communication to readout units

Acknowledgements

1) ETH Zurich, Switzerland
2) University of Belgrade, Serbia
3) University of Wisconsin, USA

Ministry of Education, Science and Technological Development, Serbia