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Abstract

Desy III is one link in the chain of injectors for HERA,
the electron/positron - proton colliding beam storage ring.
Because of the relatively low injection (kinetic) energy of
50 MeV space charge plays a significant role in deter-
mining the achievable accelerated current. The luminos-
ity in HERA is critically dependent on the transverse beam
brightness hence the need to examine, and where possible
minimise, emittance blow-up. Measurements of the beam
emittance as a function of intensity in Desy III and the de-
rived incoherent space charge tune shift are presented and
discussed. Finally some preliminary investigations with re-
gard to upgrading the injection energy via a pre-booster are
described.

1 INTRODUCTION

The Desy III synchrotron accelerates protons from a mo-
mentum of 0.31 MeV/c to 7.5 GeV/c in approximately 2s.
Injection is from a 50 MeV H− Alvarez linac using charge
exchange in a thin (34µg.cm−2) carbon foil. The linac out-
put current is around 14 mA with a variable pulse length
set in normal operation to 33µs corresponding to ten turns.
The RF system consists of a single, ferrite tuned, cavity
operating between 3.2 and 10.3 MHz providing harmonic
number 11. Transition is not crossed during the acceler-
ation ramp. The original design requirement was for an
output intensity of 1·1011 particles per bunch equivalent to
some 165 mA circulating in 11 bunches. In routine oper-
ation some 10% more current is achieved while the max-
imum observed current corresponds to 25-30% above the
design value. Although the longitudinal bunch area speci-
fied in the original proposal[1] is achieved, the assumptions
regarding transverse emittance have yet to be met. This is
the main topic reported on here.

It should be noted that injection and subsequent accel-
eration is accompanied by particle loss. The injection effi-
ciency, measured as the ratio of the charge circulating im-
mediately after the n-turn injection compared to that con-
tained within the linac pulse, is 85% to 90%. Thereafter
about 55% of this beam survives until full energy with the
losses confined to the first 250 ms of the acceleration cycle
ie ceasing after a momentum of circa 1 GeV/c. This trans-
mission behaviour does not depend upon the number of in-
jected turns below that required for the maximum achiev-
able intensity.

The occurrence of longitudinal bunch oscillations has
been reported elsewhere[2]. A feedback system[3] is in-
stalled which damps the dipole modes but is only activated

during the magnet flat-top when the revolution frequency
is constant. The threshold for the onset of the oscillations
is around an intensity equivalent to 60 ma in flat-top Thus
during acceleration the observed beam horizontal profile
at higher intensities is somewhat influenced by radial syn-
chrotron oscillations and to a much lesser extent by bunch
shape oscillations. Although the shape oscillations are not
damped by the feedback there is a negligible contribution
to longitudinal mismatch at extraction and injection into
Petra, the next accelerator in the injector chain.

2 EMITTANCE MEASUREMENTS

Desy III is equipped with residual gas monitors to measure
the beam profile in each plane and a single wire scanner to
measure the horizontal profile.[4] Both systems produce a
beam profile resulting from a time integration. The resid-
ual gas monitor is based on the readout of a video camera
whilst the wire scanner traverses at∼1 ms−1. Comparison
of the profiles yielded by each system at peak energy show
excellent agreement.[5]

The residual gas monitors, which measure the average
profile on 4 consecutive cycles, have been used to acquire
profile data over a wide range of beam intensity and mo-
mentum. The first conclusion is that there is a blow-up of
the emittances in both planes between injection (flat bot-
tom) and full energy (flat top). This is shown in Figures
1 and 2. where the horizontal and vertical emittances are
plotted as a function of accelerated current. Due to the
transmission losses already mentioned even if no blow-up
occurred there would be a factor of∼2 reduction in the
phase plane density.
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Figure 1: Horizontal emittance vs accelerated current.

Measurements of the emittances at the exit of the
linac, using charge deposition on wire harps, yieldεh =
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3.2·10−6m andεv = 2.5·10−6m for the horizontal and ver-
tical normalised, 2σ emittances respectively. To within the
measurement errors, which may be of the order of 25%, the
same values are recorded in flat bottom for at most 2-turn
injection. No increase in emittance could be detected for
2-turns with up to an additional 20 passages of the proton
beam through the stripping foil. At this low intensity there
is no evidence of emittance blow-up between injection and
top energy.
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Figure 2: Vertical emittance vs accelerated current.

The injection of further linac turns leads to a recorded
emittance at injection which increases approximately lin-
early with current. There is an additional blow-up during
acceleration which also shows an approximately linear in-
crease with intensity, rising to a factor of∼2 under standard
operational intensities.

3 TRANSVERSE SPACE CHARGE

Space charge is considered to be the most significant ef-
fect limiting the maximum achievable beam brightness. We
may write the expression for the vertical detuning as:

∆Qv =
NrpFG

πεv

(
1 +

√
εh

εv

)
Bfβγ2

(1)

Where N is the total number of circulating protons, rp =
classical proton radius, F (∼ 1) takes account of the image
forces, G (≥ 1) is a transverse distribution factor, Bf is
the bunching factor ( average/peak current ) andε is the
transversenormalised, 2σ emittance. The subscripts h and
v refer to the two transverse planes.

Measurements of the (vertical) emittance as a function
of time/momentum during the cycle together with the the
bunch length allow the derivation of the tune shift. The
bunch length is measured using a resistive wall monitor
with bandwidth of order 1GHz. To evaluate∆Qv we have
used F=G=1 in equation1 and for the bunching factor have
assumed a parabolic line density which is in good agree-
ment with measurements.

Figure 3 shows typical results for the vertical emittance
versus time during acceleration for two different end inten-

sities while figure 4 is a plot of the derived variation of the
vertical tune shift for an end intensity of 180 ma. Although
∆Qv has a maximum value of∼0.6 at the start of accel-
eration it is not clear that incoherent space charge effects
are responsible for the blow-up observed during the whole
cycle for high intensity beams. The initial phase space den-
sity of low current beams yields similar large tune shifts.

We have not observed coherent betatron oscillations dur-
ing the acceleration cycle. We may speculate that the radial
synchrotron oscillations, whose amplitude increases with
increasing intensity and which are not damped until flat-
top, impose additional good field requirements to maintain
transverse emittance. Desy III is equipped with the min-
imum number of multipole magnets required to indepen-
dently influence/compensate all 3rd and 4th order betatron
sum resonances spanned by a space charge tune spread of
0.4. Skew quadrupoles are incorporated to correct the cou-
pling. To date studies with these systems have been con-
fined to achieving increased accelerated intensity. They are
not activated in standard operation. Further studies of their
influence on emittance are planned.
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Figure 3: Vertical emittance vs time during acceleration.
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Figure 4: Derived (vertical) tune shift vs time.
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4 UPGRADE OPTIONS

Short term improvements concentrate on reducing the ob-
served losses. At present orbit correction is via dc-powered
elements. It may be advantageous to incorporate time de-
pendent correctors. We observe a systematic increase of the
orbit radius shortly after the start of acceleration indicative
of a dipole field tracking error. Improved read-out electron-
ics for the position monitors are essential and system tests
are underway.[6]

A study has been made of increasing the injection energy
using additional linear accelerator structures in the space
between the present Alvarez linac and the synchrotron
tunnel.[7] An increase of injection energy to 170 MeV is
considered feasible. This would theoretically reduce the
space charge tune shift, at constant phase space density, by
a factor of 2.

Somewhat more promising is a study in progress based
on the use of an intermediate booster.[8]. Sited in the exist-
ing building alongside the present linac this would accel-
erate 2 bunches to 800 MeV kinetic energy using a 1 Hz
magnet cycle which is the maximum repetition rate of the
linac. The space charge tune shift in the booster would be
moderate and that in Desy III reduced by a factor of 3 to 5
depending on the chosen bunch intensity.

Use of such a booster requires bunch to bucket transfer
to Desy III using fast (ca. 70 ns risetime) kickers. The
ten bunches would be boxcar accumulated using 5 booster
transfers. Measurements have been made on an 800 MeV
flat-top in Desy III which gave a beam lifetime of 270 s
and no observable emittance increase over 2.7 s. The addi-
tional accumulation time produces a negligible increase in
the overall Hera filling time.
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