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Abstract The differential equations given here describe the beam

The effects of a perfectly conducting beam pipe are
examined for both a centered continuous beam and a
centered bunched beam.  A set of coupled, ordinary
differential equations is derived for each case.  These
equations describe the dynamics of the rms beam envelopes
along the design trajectory.  Finally, an example
application is presented for the bunched beam situation.

1  INTRODUCTION

For some time we have been investigating the image effects
from a cylindrical beam pipe on beam dynamics, in
particular for space-charge dominated beams [1,2,3].  By
image effects we mean, of course, the action of the charges
induced on the pipe from the beam’s space charge.  Here
we review the most useful conclusions of these
investigations.  Specifically, sets of ordinary differential
equations are presented which describe the dynamics of the
rms beam envelopes.  These results are essentially the
continuation of work initiated by Sacherer in the early
1970's [4]. 

1.1  Ellipsoidal Symmetry and Equivalent Beams

We restrict our attention to particle beams having elliptical
symmetry for continuous beams and ellipsoidal symmetry
for bunched beams.  The results are applicable to
quadrupole focusing systems for the continuous beam case
(and, of course, solenoidal systems).  However, we further
restrict our attention to the axisymmetric situation in the
bunched beam case.  Since we are primarily interested in
the longitudinal effects, this simplifies the analysis so that
most of the results can be expressed analytically in terms of
elementary functions (otherwise, elliptical integrals would
appear in the final system).  The longitudinal results still
apply in an average sense to bunched beams having
quadrupole symmetry.  

All the results presented here are expressed in
terms of an equivalent uniform beam.  As Sacherer
discovered, the statistical dynamics of the beam (i.e., the
rms envelopes) are only loosely coupled, if at all, to the
actual distribution of the beam.  Therefore, we choose our
model to be the uniform beam, since it has well-defined
envelopes (unlike a gaussian or a thermal distribution).
The equivalent beam principle tells us that the actual beam
may be modeled by a uniform beam so long as both beams
have the same second spatial moments and rms emittances.

envelopes of the equivalent uniform beam.

1.2  Further Limitions

The major short-coming of the analysis is that is does not
describe a self-consistent situation.  Specifically, our model
for the self-fields of the beam does not consistently couple
with the beam dynamics.  The net result is that there is no
model for rms emittance growth in the beam.  However, in
the space-charge dominated situation this drawback is of
little concern.  In this case the beam dynamics are
dominated by the self-fields of the beam and thermal effects
play only a minor role.  Moreover, these beams tend toward
a uniform distribution and it has beam shown that in the
bunched beam case that the equilibrium (stationary)
distribution is closely approximated by an ellipsoid [5].

1.3  Moment Equations

The general idea of the analysis is to take moments of the
equations of motion with respect to the particle beam
distribution.  The Vlasov equation then allows the time
derivative operator and the moment operator to commute.
The net result is a set of coupled, ordinary differential
equations involving the moments.  We concentrate on the
second order moments.  Letting �#� denote the moment
operator with respect to the particle beam distribution, we
find the following [6]:

where � is the path length along the design trajectory, the
prime indicates differentiation with respect to �, � is the
relativistic factor, v is the bunch velocity (assumed
constant), q and m are the particles’ charge and mass,
respectively, the k (�)’s are the “spring constants” of the

�

focusing system, the �̃ ’s are the rms emittances, and the E
� �

are the self electric fields.  In the above system we have
assumed that the individual magnetic self-fields in the
beam frame  are negligible but the collective magnetic field
is not.  Our task is now consigned to the determination of
the moments ��E �.

�

2  CONTINUOUS BEAMS

Here we assume that the beam is continuous along the
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Figure 1: Function A (x) for different distributionsf

design trajectory and that the � variations are slow enough be determined analytically in terms of elementary
to allow for an accurate 2D transverse plane analysis.  To functions, they are not simple expressions.  Therefore, we
find the moment �xE � with images we employed a Green’s simply present the results of the analysis for the equivalentx

function technique.  By expanding Green's function in a uniform ellipsoid.  The interested reader is referred to [3]
trigonometric series (in polar coordinates), we can identify for the details.  We have
the self-field terms corresponding to the induced (image)
charges on the beam pipe.  Taking the moments of these
fields we get [2]

where b is the radius of the beam pipe, Q is the charge per
cross-section, and O(·) indicates the standard order
notation.  The first term was originally calculated by
Sacherer and is the free-space self-field contribution.  The
second term represents the contribution due to the induced
charges from the distribution's quadrupole moment.  The
last term is meant to say that the image forces due to the
higher order moments of the charge distribution (octupole
moments and up) scale as �x � /b , etc.  Note that the above4 2 8

expression is independent of the distribution, this condition
leads to the notion of equivalent beams.  

Substituting the above equation and an analogous
one for the y direction into the moment equations includes
the lowest order effects from images.  Translating the
resulting moment equations into the equations for the
equivalent uniform beam yields the result

where X(�) and Y(�) are the beam envelopes, the
� (z)=k (z)/(�mv ) are the focusing functions, and
� �

2

K=qI/(2%� �mv ) is the generalized beam perveance [7] (I0
3

being the beam current).  The quantities �  and �  are thex y

effective emittances of the beam given by 4�̃  and 4�̃x y,

respectively.  These equations are recognized as the
standard KV coupled-envelope equations with the addition
of a term (for each equation) accounting for the dominant
image effects.  Since the beam is centered and has elliptical
symmetry, �x � is zero and the next image term will be an3

octupole term.
One may see that the image effects do not play a

large role in the beam dynamics.  However, for beams with
large eccentricities we have seen this role to be significant.
Matching sections, overall, will probably be more
susceptible to image effects since the beam envelopes tend
to make larger excursions through them. 

3 BUNCHED BEAMS

As mentioned in the introduction we restrict our attention
to the axisymmetric case and use cylindrical coordinates
(r,z) where r =x +y .  Therefore, the bulk of the analysis is2 2 2

the determination of the moments �rE � and �zE�.r z

Although for the free-space situation these moments may

where R(�) and Z(�) are the beam envelopes, and �  and �r z

are the effective emittances given by 5/2�̃  and 5�̃ ,r z

respectively. The functions W  and W  come from the free-r z

space self-fields and the function A  represents the imagef

field effects on the dynamics.  This function depends upon
the actual distribution profile of the particle beam,
indicated by the label f.  The function A (R,Z) actually hasf

a simpler representation as given below.

(The zero value for A  comes from the fact that imagef

effects are negligible whenever Z<R.)  Thus, we see that Af

really depends upon only one parameter.  The graphs of Af

for several different distributions are shown in Fig. 2.  The
expression for W  and W  are given below.r z

and
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Figure 2: Bunched beam example

In the space-charge dominated situation the
uniform distribution is of primary importance.  The
expression for A  in this case is given belowf

This expression may be integrated numerically to form a
table of values for A (x) (for interpolation).  Once done thef

differential system may be integrated using standard
numerical techniques.  We may also express in terms of an
infinite series of Bessel functions

This expression is convenient for asymptotic analysis.

3.1  A Simple Example

To illustrate the utility of these results we have simulated
a simple transport system for bunched particle beams.  The
transport system has uniform focusing in the radial
direction and periodic focusing in the longitudinal
direction.  The focusing functions for the z direction is
shown in Fig. 2a.  We have used a “hard-edge” function for
� (�).  The period of � (�) is 25cm, the pulse length is 5cm,z z

with maximum value 200m .  The constant value of � (�)�2
r

is 100m .  The beam parameters are given as follows:�2

K=0.01, � =5×10 m-rad, � =2×10 m-rad, and �=1.  r z
�5 �5

The matched beam solution in free space is shown
in Fig. 2b while the matched beam solution including a
pipe with radius b=5cm is shown in Fig. 2c.  In both
situations the top curves is the Z envelope.  Obviously, the
pipe has a substantial effect on the beam dynamics in this
case.  Note the coupling between the radial and
longitudinal motion.  Both planes oscillate synchronously,
in phase with the longitudinal envelope equation, as they
travel down the beam axis.

4  CONCLUSIONS

In the continuous beam case the image effects are relatively
minor but can become a factor if the beam undergoes
extreme eccentricities .  It would seem to be sound policy
to design systems which minimizes image effects and the
extended KV equations offer a simple formula to
analytically determine when they may become troublesome.

In the bunched beam case image effects become
unavoidable whenever Z>R.  The designer must account for
these effects in beam transport systems.  The differential
equations presented herein provide a way to simulate bunch
behavior, at least in the space-charge dominated regime.
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