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Abstract

We present a method to simulate the transport of a non-
laminar DC beam under the influence of self-fields. The
simulation randomly populates an initial phase space dis-
tribution with n particles. These particles are propagated
in steps through the transport region, and the particle posi-
tions at each step are used in an unbinned maximum likeli-
hood fit for the beam profile distribution. The self-fields at
the position of each particle are calculated using the fit-
ted beam profile distribution. The total computation re-
quired by the simulation scales linearly withn. The sim-
ulation for an electron beam with a phase space given by
the Kapchinskij-Vladimirskij distribution is in good agree-
ment with the beam profile predicted by the Kapchinskij-
Vladimirskij envelope equations.

1 INTRODUCTION

The optics for a charged particle beam that does not satisfy
the conditionβ = v/c ≈ 1 is influenced by the beam self-
forces. These forces include the electrostatic repulsion be-
tween the like charges in the beam and the focusing due to
the self-magnetic field. The beam self-forces may become
an important consideration in the transport region near the
output of the particle source for the beam. In some appli-
cations, an electron beam is delivered directly from the gun
to the target with no further acceleration, and the electro-
static repulsion cannot be tolerated. The beam may then
be neutralized by allowing it to ionize a dilute gas[1]. We
will denote the ratio of electron to ion charge densities as
the beam neutralization factorf . Typically, f = 1 imme-
diately after the beam encounters the ionizing gas.

The evolution of the beam envelope for a uniform ellipti-
cal beam in the absence of longitudinal magnetic fields may
be calculated by integrating the Kapchinskij-Vladimirskij
(K-V) equations if the phase space of the beam is given by
the K-V distribution[2]:
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The quantitiesa and b are the semi-axis of the uniform
beam profile ellipse in thex − y plane normal to the refer-
ence trajectory along thez direction. The slopesx′ andy′

yield the transverse momentapx andpy in thex− y plane,
wherepx, py << pz. εx andεy are the emittances (area/π)
in thex−px andy−py planes. The K-V equations fora(z)
andb(z) in the absence of external fields are given by[2]:
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wherere is the classical electron radius andN is the num-
ber of electrons per unit length of the beam. These equa-
tions are easily integrated in the presence of transverse
magnetic fields.

A realistic beam is unlikely to satisfy the conditions re-
quired by the K-V equations. The initial transverse mo-
mentum distribution is more likely to be Maxwellian, and
longitudinal magnetic fields may be present. This note de-
scribes a Monte Carlo simulation that in principle may be
adapted to simulate an arbitrary beam under the influence
of self-fields. The simulation has been investigated for a
DC beam satisfying the K-V distribution; this allows the
results from the simulation to be compared to the beam en-
velope predicted by the K-V equations.

2 MONTE CARLO SIMULATION

The simulation assumes that the profile of the current den-
sity in a plane normal to the reference trajectory may be
modeled by a profile functionJ(x, y; ~α), where the param-
eters~α are allowed to evolve as the beam propagates. The
profile function should be flexible enough to represent the
beam profile within the transport region of interest. Choos-
ing an appropriate profile function with a minimum number
of parameters is not a trivial task and requires some phys-
ical guidance. The profile function chosen to represent the
K-V beam is discussed in the next section.

The simulation randomly generates an ensemble ofn
particles that populate an initial beam profileJ(x, y; ~α0)
and an initial transverse momentum distribution. These ini-
tial distributions must reproduce the beam emittance.

The initial beam profile is used by the simulation to cal-
culate the beam self-fields at the position of each particle.
For a round (azimuthally symmetric) beam these fields are
easily obtained from the integral

2π

∫ R

0

J(ρ2 = x2 + y2; ~α0)ρdρ,

whereR is the radial position of the particle. If the beam is
not azimuthally symmetric, the fields must be obtained by
numerical integration.
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Once the self-fields are calculated, the external fields are
added and each particle is propagated by a short stepdz.
Because the self-fields scale with the dimensions of the
beam, the step length is chosen to be a scale factorFs times
a parameter representing the size of the beam. If we were
propagating a round beam, for example, we might choose
this parameter to be the radius enclosing half of the par-
ticles. For the uniform elliptical beam used with the K-V
distribution, we have chosen the minor semi-axis of the el-
lipse.

After the particles are propagated bydz, the newx − y
positions of the particles are used in an unbinned maxi-
mum likelihood fit to determine the parameters~α of the
new beam profileJ(x, y; ~α). We have used the downhill
simplex method[3] to perform the fit, using the parame-
ters from the previous step as initial values. The self-fields
are recalculated at the new particle positions using the new
beam profile, and the particles are each propagated through
the next step. This process continues until the particles
have been propagated through the desired transport region,
yielding the solutionJ(x, y; ~α(z)) for the beam profile at
each step.

The number of computations performed by the simula-
tion scales linearly with the number of particles. For appli-
cations requiring a numerical integration of the beam pro-
file, the computation requirements may become quite large.
Fortunately, the simulation is ideally suited for distributed
processing. Distributed processing has been implemented
on the workstation network at Imatron. Several client pro-
cesses on different CPUs each generate a fraction of the
total number of particles. The clients calculate the fields
and propagate the particles for each step. The positions of
the particles for all of the clients are read over the network
by a single server process, which performs the fit to deter-
mine the parameters~α. Each client reads~α back from the
server so that it can calculate the self-fields for propagating
the particles through the next step.

3 SIMULATION USING THE K-V DISTRIBUTION

A beam with a K-V distribution in phase space has a uni-
form elliptical profile. We approximate a uniform profile
by using a profile function similar to the Fermi-Dirac dis-
tribution. For a round beam we perform a one parameter fit
to the radiusa:

J(ρ2 = x2 + y2; a) =
I0

ℵ[
1 + exp

(
λ2(η2 − 1)

)] . (3)

I0 is the total current in the beam,λ controls the cutoff of
the profile near the radiusa, ℵ = πa2 log(1+exp(λ2))/λ2

is a normalization constant, andη2 ≡ ρ2/a2. Eq. (3) may
be immediately generalized to a uniform elliptical beam
with semi-axesa and b by settingη2 = x2/a2 + y2/b2

and ℵ = πab log(1 + exp(λ2))/λ2. The beam profile
J(x, y; a, b) then becomes a two parameter fit toa andb.
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Figure 1: The beam envelope semi-axes predicted by the
K-V equations (solid line) and the simulation (open circles)
for a 0.635 Amp neutralized electron beam with a kinetic
energy of 130 KeV and an emittance of4.3 × 10−4 π cm-
radians.

The initial phase space is populated withn electrons us-
ing Eq. (1) withε = εx = εy. For each electron we gen-
erate three random numbers between 0 and 1 which we de-
note ass1, s2, ands3. Leta0 andb0 be the initial semi-axes
of the beam profile ellipse. We first maps1 into the unit
area underneath the normalized beam profile distribution
and solve forηs:

s1 =
πa0b0

I0

∫ ηs

0

J(x, y; a, b)ηdη. (4)

We then have:

θ = 2πs2

φ = 2πs3

x = a0ηs cos θ

y = b0ηs sin θ

x′ = ε
√

(1 − η2
s) cosφ/a0

y′ = ε
√

(1− η2
s) sinφ/b0. (5)

The electric and magnetic fieldsE andB are generated
at the position of each electron by numerical integration of
the beam profile. Each surface elementdS′ = dx′dy′ of
the beam profile is treated as a filament of current at the
positionr′ = (x′, y′) with the currentdI = J(r′; a, b)dS′.
The current filament generates the fieldsdE(r) anddB(r)
at the positionr = (x, y) of an electron:

dE(r) =
(

ecµ0

2πβ

)
(r − r′)
|r− r′|2 dI

dB(r) =
(

eµ0

2π

)
ẑ×(r − r′)
|r− r′|2 dI. (6)

For a profile with elliptical symmetry, we make the substi-
tutionsu = x/a andv = y/b to map the ellipse onto a
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unit disk in theu − v plane. The disk is divided into two
domains: a central core of radius1− π/4 containing about
5% of the total area, and a surrounding annulus. The core
is integrated by 21 point Gaussian quadrature. The annulus
is further subdivided into square tiles usingm radial divi-
sions and8m azimuthal divisions. Each tile is integrated
by 9 point Gaussian quadrature. We have found that setting
m = 7 provides a sufficiently accurate determination of the
self-fields.

To obtain close agreement with the K-V envelope equa-
tion, we have setFs = 1/4 and used several hundred elec-
trons. Figure 1 shows the results from a simulation (plotted
at 100 step intervals) of 840 electrons and the K-V envelope
equation for a 0.635 Amp neutralized (f = 1) beam with a
kinetic energy of 130 KeV and an emittance of4.3× 10−4

π cm-radians.

4 COMMENTS ON SIMULATING A
MAXWELLIAN BEAM

Preliminary investigations are now in progress for a real-
istic electron beam with a Maxwellian momentum distri-
bution that begins at a round cathode of radiusa0. The
slopesx′ and y′ now have Gaussian distributions with
σ = ε/(2a0), whereε is the r.m.s. emittance[2]. The pro-
file distribution is expected to include the profile from Eq.
(3) because the beam is initially uniform.
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