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Abstract

The formation of nearly uniformly distributed beams has
been accomplished by the use of multipole magnets.
Multipole fields, however, are an inappropriate basis for
creating precise distributions, particularly since
substantial departures from uniformity are produced with a
finite number of multipole elements.  A more appropriate
formalism that allows precise formation of a desired
distribution is presented.  Design of nonlinear magnets for
uniform-beam production and the optics of an
accompanying expansion system are presented.

1  INTRODUCTION

We consider the general problem of providing an
arbitrary spatial beam distribution at a point starting from
a given input beam.  Such a technique is of interest in
matching and for applications where material or power
deposition must conform to a particular distribution. For
some purposes the requirement is simply to sharply limit
the beam extent on a target to prevent undesired
radioactivation of surrounding areas.  Often a uniform
distribution is desired for medical purposes or for
minimizing the cooling on a target.  Other distributions
may be useful in maximizing neutron flux from a
spallation target.  Although we here concentrate on
producing a uniform distribution, the extension to other
distributions is straightforward.

The problem of producing a uniform distribution has
previously been attacked by using a multipole series to
provide a nonlinear field that folds the beam in phase
space [1-4]. The results of such processing of an initially
gaussian beam by application of a strong octupole field
and subsequent magnification optics are shown in Fig. 1.

Fig. 1  Beam distribution versus transverse distance after
nonlinear focusing by an octupole.  Units are arbitrary.

In this process, the beam is expanded within the
octupole in, say, the x dimension so that it is very narrow

in y to eliminate coupling terms.  for sufficient
expansion, the effect of the emittance is small and the
x x, ′  phase space may be represented by a line, as was
done in the creation of Fig. 1.  Figure 2 shows the phase
space for the distribution of Fig 1.  The “ears” on the
distribution are caused by the fold shown in Fig. 2 and are
smaller for finite emittance and momentum spread.  The
distribution is well confined except for the wings that
form the lower and upper branches of the field.  If further
multipoles are added the confinement can be improved.

Fig. 2  Phase space for the distribution of Fig. 2.  The
ordinate is the position in Fig. 1 and the abscissa is the
divergence in arbitrary units.

It has been noted [5] that a series of multipoles can be
configured to tend toward an analytically exact uniform
distribution, but the convergence is slow.  We consider a
magnetic element that is capable of providing the precise
distribution required.

2  MAGNETIC FIELD

Since it is possible to effectively decouple the two
transverse phase planes, a one-dimensional treatment is
adequate.  Beam in an element dx0  contained in a
distribution ρ0 0( )x , described by initial phase-space
coordinates x0  and ′x0 , transformed to a set of coordinates
x  and ′x  obeys the relation ρ ρ( ) ( )x dx x dx= 0 0 0  if the
two distributions are single valued.  Thence,
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This relation follows Batygin [5] and others.

We consider a small-emittance beam, extended in
x x0 0, ′   phase space with slope a dx dx= ′0 0/  and with
small extent in y, that passes through a magnet of length
l  with y-directed magnetic field B x( )0  on the x0  axis.
A subsequent linear optical system described by a matrix
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R transports the beam to the location described by the  x
coordinates. Transformation between x  and x0  is

x R aR x l R B x B= + +( ) ( ) /11 12 0 12 0 ρ  2)

where Bρ  is the beam rigidity.  Inserting this relation
into Eqn. 1), the derivative of the magnetic field with
respect to x0
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Integrating, the field becomes
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Thus for various choices of beam transport, the fields
required to produce a given distribution will vary by a
linear term.  One natural choice, given a limited beam
distribution, is to minimize the peak field by adjusting
the linear term.  An attractive alternative sets

 R aR11 12 0+ = , 5)

i.e., a point focus on the target.

For the case of a uniform target distribution of width
2w , Eqn. 4) becomes
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Note that for a limited initial distribution and the choice
of Eqn. 5), the field at large x0  is constant, a convenient
field for magnet design.  We consider an initially
gaussian-distributed beam with rms width σ  to obtain a
field
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An alternative choice for the initial distribution is
~ / cosh ( / )1 2 x c  which yields w x c R ctanh( / ) /( )2 12 , a
very similar function to 7) (along the x0  axis) for
c ~ .1 25σ , differing by only 3% in a limited range.  The
significance of this is that the latter distribution has been
noted to represent a beam that is poorly matched in a linac
whereas the gaussian distribution is representative of a
well matched beam.  Hence, a nonlinear magnet with
some adjustability can presumably deal with a range of
observed beams.

3 BEAM OPTICS

3.1  One-Dimensional Optics

Consider a drift of length L  as an example of an
optical system.  Then R11 1=   and R L12 = ; accordingly
set a L= −1 / .  For a given L  the peak value of the
magnetic field B0  can be set from the asymptotic value of
Eqn 7).  Choosing L=1 and w=1 sets a = −1 and
B l B0 1/ .ρ =   Setting σ = 0 1. , the angular deflection

through the magnet as a function of x0  is shown in Fig.
3.

Fig. 3  Plot of the magnetic field along the x0  axis

needed to produce a uniform distribution for the
parameters given in the text.

The phase space loci just after the nonlinear magnet
and at the target are given in Fig. 4, where the calculation
is limited to 6σ .  Note that, at the target, the central 2σ
of the beam is transformed to within x = ±0 95.  while the
remainder of the beam is placed at x > 0 95.  along the
trajectory tending asymptotically to the lines x = 1 0. .

       
Fig. 4.  Phase space at the nonlinear magnet and at the
target for the example cited in the text.

Initial and final distributions are shown in Fig. 5.
The final distribution departs negligibly from constant
within − ≤ ≤w x w.  Finite bin sizes in the calculation
blur the final-distribution edges slightly.

3.2 Errors

We consider two possible errors that affect the final
distribution.  The first is departures from the initial
distribution.  In general, if the initial distribution is
“wider” than the distribution for which the magnet was
constructed, the final distribution will grow “ears” (as in
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Fig. 1); “narrower” distributions will experience rounding
on top.  This is illustrated in Fig. 6 that shows the
output distributions for σ = 0.09 and 0.11.  If a 1/cosh2

input distribution is used, similar changes occur in the
distribution.

Fig. 5  Normalized initial and final distributions.

Fig. 6  Final distributions for ±10% width errors in the
initial distributions.

Steering errors also change the distribution.  This is
shown in Fig. 7 where the beam enters the nonlinear
magnet off axis by 0.1σ .

Fig. 7  Final distribution for a steering error of 0.1σ .

Note that despite marked changes in the distribution,
the beam remains entirely confined for both these cases
because of the well-defined beam limits due to the vertical
part of the phase-space trajectory seen in Fig. 4.

5.3  Two-Dimensional Optics Design

Two nonlinear magnets are used in producing a beam
that has a given two-dimensional profile on the target.  In
the first magnet, the beam is made small in the y
dimension so that interplane coupling by the field x
components is negligible and the beam is made large in
the x dimension with large correlation and slope a .  A
subsequent focusing section provides condition 5) in the x
direction with small w  in the second linear magnet that is
rotated 90° from the first.  This limits the beam in the
magnet gap.  The beam in the y direction is highly
correlated (as specified in the x direction of the first
magnet).  A second focusing section provides the
condition 5) from the second magnet to the target in the y
direction and from the first magnet to the target in the x
direction.  For each plane, the values of R12  and R34  are
determined by the desired values of w  and the value of
B0 , in the respective planes.  Such simulations have
verified the calculations shown here.

For a given value of B0  four quads are in general
needed in each focusing section to meet all conditions.
The number of quads may be reduced by using symmetry,
system lengths, and choice of input beam.

5 MAGNET DESIGN

We treat the magnet design only briefly.  The magnet has
quadrupolar symmetry. For sufficiently low fields, the
pole shape along a scalar equipotential is determined from
the field in the complex plane.  The complex potential
provides the conformal map into a dipole geometry, to be
used in specifying the pole width or shimming that
provides a homogeneous field to the extreme particles of
the beam.  Variability in the magnet field shape to fit off
nominal distributions is provided by dividing the pole
into individually excited segments or by current sheets on
the pole surfaces.
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