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Abstract

This paper presents investigation of the proposed use of
round beams for increasing the luminosity in colliders. The
main idea of round beams is briefly discussed. Numerical
simulations of round colliding beams for the Tevatron are
much in favor of round beams, because they provide reduc-
tion of harmful impact of beam-beam forces on beam sizes,
particles diffusion and better stability with respect to errors
and imperfections.

1 INTRODUCTION

The essential conditions of the round beams [1] are equality
of horizontal and vertical emittancesεx = εy = ε, beta
functions at interaction point (IP)βx = βy = β, and tunes
νx = νy = ν. Consequently, the transformation matrix in
between of IP’s can be generally presented in the form of

R(φ) ·
(
T 0
0 T

)

(where T is a2 × 2 matrix with detT = 1 and R is the
matrix of rotation over an angleφ ), therefore, the rotational
symmetry of the kick from the round opposite beam, com-
plemented with theX −Y symmetry of the betatron trans-
fer matrix between the collisions, result in an additional
integral of motionM = xy′−yx′ that is longitudinal com-
ponent of the angular momentum. Thus, the transverse mo-
tion becomes equivalent to a one dimensional (1D) motion.
Resulting elimination of all betatron coupling resonances is
of crucial importance, since they are believed to cause the
beam-lifetime degradation and blow-up. The reduction to
1D motion makes impossible the diffusion through invari-
ant circles. Moreover, the beam-beam parameter for the
round beamsξx,y = Nr0

4πγε , does not depend ons because
the emittanceε = σ2/β is independent of the longitudinal
coordinate. This leads to suppression of synchrobetatron
resonances (one can find more detailed discussion of these
questions in [2]).

One can expect, that for hadron colliders, where the
beams are almost round from the beginning, the most use-
ful predicted properties of the Round Colliding Beams
(RCBs) lead to their better stability, lower losses and longer
beam lifetime.

∗Operated by Universities Research Association, Inc., under Contract
No. DE-AC02-76CH03000 with the US Department of Energy

2 BEAM-BEAM SIMULATIONS WITH ROUND
BEAMS IN TEVATRON

2.1 Beam-beam simulation code and parameters of the
Tevatron upgrade

We employ a recently developed beam-beam simulation
code BBC Ver.3.3 [3] developed by K.Hirata for the beam-
beam interaction in “weak-strong regime” which is close to
conditions of the Tevatron collider upgrade named TEV33
[4] where proton bunch population is several times the an-
tiproton one. The “weak” (antiproton) bunch was presented
by number of test particles, while the “strong” (proton)
bunch appeared as an external force of Gaussian bunch.

Figure 1: The rms beam sizeσ/σ0 vs betatron tuneνy =
νx = ν for the round beams (dashed line), and the rms hor-
izontal and vertical sizesσx,y/σ0 x,y for non-round beams
(solid and marked lines, respectively). (ξ = 0.05, ∆ϑ =
0.002, 50,000 turns).

Typically we tracked 100 (maximum 1000) test particles
through five slices of strong bunch for (50-100)·103 turns.
50,000 turns in Tevatron correspond to about 1 s, some 200
synchrotron oscillation periods. No damping due to radia-
tion or cooling is assumed to play role in the beam dynam-
ics. Further increase of the number of particles or number
of slices gave almost identical results.

The code outputs of greatest practical utility are lumi-
nosity, rms beam sizes and maximum betatron amplitudes
which any of the test particles attained during tracking.
These outputs are given with respect to unperturbed values,
e.g. sizes and amplitudes are divided by their design rms
valuesσx,y/σ

0
x,y andAmax

x,y /σ0
x,y, the luminosity is pre-
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sented by the reduction factor ofR = L/L0 where the
bare design luminosityL0 = f0NpNp̄/(4πσ0

xσ
0
y) andf0 is

the rate of collisions. The relevant parameters of the simu-
lations were chosen close to the TEV33 design ones.

We present here the results for the RCB scheme with-
out rotation of betatron oscillations axis, although other
schemes proposed originally for electron damping rings re-
quire such rotation, i.e. strongx − y coupling. The com-
parison of the different schemes is made partly in [2].

2.2 Comparison of RBs and non-RBs. Random tune mod-
ulation.

In order to make more realistic simulations we use noisy
betatron phases jumps. The reason is that the weak res-
onances of high orders are usually not well seen after a
small number of revolutions and in order to enhance them
we used a method of the Ornstein-Uhlenbeck tune modu-
lation (see, for example [5]) with correlation time of 100
turns.
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Figure 2: Beam size after 50,000 turns versusξ. The upper
curve corresponds to the short strong Gaussian bunch, the
lower one — to the strong counter bunch with the ”inverse
beta-function” distribution. The beta-function at IP is 25
cm. a – left figure – tunes are equal toνx = νy = −0.01;
b – right figure – tunes are equal to 0.05.

Now, with use of small noisy phase modulation (the pa-
rameter∆ϑ with the meaning of maximum changing of
phase per turn in the Ornstein-Uhlenbeck process is equal
to 0.002) , we compare the rms beam sizes after 50,000
turns for the round beams and the beams which are far from
round. The colliding round beams satisfy to all the condi-
tions:
εx = εy = 3 · 10−9 m· rad;
β∗

x = β∗
y = 25 cm;νx = νy = ν,

while the ”not-RBs” break them all:
εx = 5/3εy = 5 · 10−9 m· rad;
β∗

x = 35/25β∗
y = 35 cm;νx = ν; νy = ν + 0.18 6= νx.

As the result, the maximumX,Y betatron amplitudes (see
Fig.1) for the non-round beams are larger than the ampli-
tude at the RBs case. Several strong resonances are seen
in the non-RB curves while the RBs perform only the size
increase atν = 0.25.

2.3 Simulations with “inverse beta function” charge dis-
tribution. Optimum bunch length.

Everywhere above we deal with 2D motion, which can be
reduced to 1D motion due to the angular momentum con-

servation. But 1D motion with the time-dependent Hamil-
tonian, generally speaking, is also stochastic, although it
has more ”regularity” in comparison with a general 2D mo-
tion. What we need to make the motion regular, is one more
integral of motion for any value of the first one (angular
momentum). It was proved in [6], that we obtain additional
integral of motion if we take the betatron tunes near integer
or half-integer resonance and the longitudinal charge distri-
bution of the strong bunch (e.g. proton one in the Tevatron)
proportional to the inverseβ-function (one can find addi-
tional details of this system in [2]):

f(2s) = C/β(s) = C/(β∗ + s2/β∗), (1)

whereC is a constant,β∗ is theβ-function value at the IP.
The beam-beam interaction of the bunches with the ”in-

verse beta function” longitudinal charge distribution can
provide integrable dynamics and better stability. We com-
pare the behavior of such beams with the case of short
round Gaussian colliding bunches at two working points.
Note, that transverse sizes, bunch intensities, the weak
bunch length of 15 cm andβ∗ = 25 cm are the same in
both cases. Fig.2.2a presents the beam size growth vs.ξ
after 50,000 turns forν = −0.01.

From the upper curve one can see significant growth
of the beam sizes of the short bunches with increase of
ξ, while there is almost no effect for the integrable case
(in fact, we allowed about 10% deviation of the longitudi-
nal charge distribution in the strong bunch from the exact
1/β(s) solution) – see the lower curve. There is only a
small growth atξ ' 0.1; if the charge distribution differs
by about1% from 1/β(s) then there are no peaks at all and
the beam size is not changing in time (this trivial result is
not presented).

The second working point ofν = 0.05 looks better for
the both cases and Fig.2.2b shows a significant difference
between the two cases only for largeξ.

If it’s difficult to make such a distribution function, one
can choose the best ratio of the length of the Gaussian
bunch and beta-function at IP (the previous results for the
Gaussian bunch were obtained with a very short strong
beam). This optimum length depends on the working point.
For better understanding of this fact, one can imagine a
simple model of the “flat-top” (or rectangular) charge dis-
tribution over the full length ofl and with phase advance
over half-turn equal todψ = ds/β0 = l/2β0, whereβ0

is beta-function at IP. Let’s assume, that the beta function
is almost constant over the bunch lengthβ(s) ≈ β0 and
the longitudinal distribution is a constant within the coor-
dinate interval of±l/2 and vanishes elsewhere (as well as
the transverse kick) and in between of the tail of one bunch
and the head of another we have the unity transformationI
of the betatron variables , then one can leave out the arcs
and connect kicks from all our bunches together. As here
is no dependence of the force on time so this dynamical
system is integrable and has no resonances, so we have an
optimum in beam lifetime for presented above relation of
the phase advance and bunch length.
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Figure 3: Contour plot of maximum betatron amplitude
Amax/σ0 vs rms bunch lengthσs and tuneνy = νx = ν,
ξ = 0.05, ∆ϑ = 0.002, 75,000 turns.

We performed a search for optimalσs over tunes of
νx = νy = ν = 0.02...0.25 – see Fig.2.3 with the con-
tour plot of the maximum betatron amplitudeA/σ0 vs. σs

andν (75, 000 turns,ξ =0.05,β∗ = 25 cm, phase modu-
lation ofϑ = 0.002). The optimal bunch length (at which,
say,A/σ0 ' 4) depends on the tune and is about 30 cm
for the tune around 0.2, about 20 cm for the tune around
0.12, and about 40 cm for the area of a good lifetime near
the integer resonance. The last one corresponds to formula
σ ' √

2β∗. One of the probable explanations of that re-
lation can be that the first terms in Taylor expansion of the
Gaussian distributionf(s) ∝ exp−s2/2σ2

s and the “in-
verse beta function” distributionf(s) ∝ 1/(1 + (s/2β∗)2)
are equal ifσs =

√
2β∗. It is interesting to note, that sim-

ilar results on the optimum bunch length were observed in
RCBs simulations for electron-positron colliders [7].

2.4 Asymmetry between two IPs

The degradation of the collider performance due to beam-
beam effects is often thought to be more significant if there
are several asymmetric interaction points. Fig.4 present re-
sults of the maximum amplitude simulations for the scheme
with two IPs. If one denotes the phase advance between the
first IP and the second one asν and between the second one
and the first one asν+∆ν1,2 then the horizontal axis is for
ν and the vertical axis is for∆ν12. The lighter areas corre-
spond to smaller maximum betatron amplitude after 10,000
turns, the contour spacing goes as follows:(Amax/σ0)=4,
5, 7, 10, 15, 20, 25, 30, 40, 50.

It is interesting to note, that over large tune space the
optimum inAmax lays out of the condition of symmetry,
i.e. at∆ν12 6= 0.

Figure 4: Contour plot of the maximum betatron amplitude
vs. tuneν (horizontal axis and the tune difference between
two IPs∆ν12 (vertical axis) for the round beams.∆ϑ =
0.002, 100,000 turns.

3 CONCLUSION

In this article we studied new ways to improve single par-
ticle stability in colliders. From the simulations we con-
clude that in the presence of the beam-beam interaction,
the round beams show better particle stability and slower
transverse diffusion rates than not-round beams. We also
performed a search for optimum bunch length and investi-
gated the ”inverse beta-function” longitudinal distribution
and found a qualitative agreement with theoretical predic-
tions.

The model we used in our simulations is not quite ad-
equate to the Tevatron due to some evident reasons, and
for further investigations of beam-beam effects we plan to
study the influence of non-linearities outside the IP, conse-
quences of the RCBs implementation for intrabeam scatter-
ing issues and for the effects of the parasitic interactions.
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