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Abstract

This paper discusses a precise numerical integrator for
ultra-relativistic radiating electron motion. It is firstly
shown that the covariant form Lorentz force equation of
motion possesses the Lorentz group Lie algebra structure
and the Lorentz-Dirac equation of motion as well. After
that, a precise numerical integrator for radiating electron is
constructed based on the Lie algebra properties. Numer-
ical examples show that this integrator can be effectively
used not only for the ultra-relativistic electron motion but
also for a non-relativistic electron motions in pure magnetic
field as well.

1 INTRODUCTION

One of the precise integrators for charged particle, the sym-
plectic integrator, shows us its powerful properties for inte-
gration of the Hamilton systems. The leading principle for
obtaining precise solutions is the conservation of the sym-
plectic structure of the system. Here, we know that radiat-
ing electrons do not belong to the Hamilton systems when
its velocity is very close to the light speed (ultra-relativistic
velocity), because of radiation dumping effects. For that
situation, any different kind leading principle are required,
if one want to obtain precise solutions.

From this point of view, this paper considers of a numer-
ical integrator for the ultra-relativistic radiating electron.

2 LORENTZ GROUP LIE ALGEBRA
PROPERTIES OF EQUATION OF MOTION

The ordinary Lorentz force equation of motion (without the
radiation reaction force) is expressed in the following co-
variant form (MKSA),

mc
duµ

ds
= eFµ

ν uν , (1)

then one can find that the electromagnetic field tensorFµ
ν

possesses special structure,

Fµ
ν =




0 Ex/c Ey/c Ez/c
Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0


 , (2)

or

Fµ
ν =

E
c
•K−B • S , (3)

whereK andS are the boost and rotation operators, which
construct one of irreducible representations of the Lorentz
group Lie algebra[1],

K = (Kx, Ky, Kz) ,

Kx =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


, Ky =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


, Kz =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


,

(4)

S = (Sx, Sy , Sz) ,

Sx =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


, Sy =




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


, Sz =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


.

(5)

The representation (3) can be naturally understood if we
remember that the four velocity vectoruµ is exactly con-
fined by the following identity,

uνuν = 1 , (6)

that is to say, Eq. (1) merely tells us that the four velocity is
governed by the Lorentz transformation along the particle
trajectory and then the field tensorFµ

ν plays the role of the
Lorentz group Lie algebra. (This situation can be expressed
in Fig. 1. The terminal point of the four vector is always
on unit sphere in 4D Minkowski space and its trajectory
moves along “vector”Fµ

ν .)

Fµ
ν = E

c •K−B • S

µ

Figure 1: Trajectory of terminal point of four vector.

There also exists similar situation in the radiation dump-
ing phenomena. The ultra-relativistic radiating electron is
governed by the Lorentz-Dirac equation of motion [1, 2, 3],

mc
duµ

ds
= eFµ

ν uν

+
e2

6πε0c

(
d2uµ

ds2
uν − d2uν

ds2
uµ

)
uν , (7)
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Then, the radiation reaction term (the second term) also has
similar structure as the field tensor and can be expressed by
using the irreducible representations,K andS,

mc
duµ

ds
= eHµ

ν uν (8)

where

Hµ
ν ≡ Fµ

ν + Gµ
ν

≡ Fµ
ν +

e

6πε0c

(
d2uµ

ds2
uν − d2uν

ds2
uµ

)
(9)

3 CONSTRUCTION OF PRECISE INTEGRATOR
FOR RADIATING ELECTRON

The foregoing discussion tells us that the four velocity vec-
tor uµ satisfies,

uµ(s) = exp
( e

mc
Fµ

ν s
)

uν(0) (10)

That is to say, the exponential fuction is operating onuµ

as the Lorentz transformation. Then, one more integral of
Eq. (10) yields the following transformation rule of the four
dimensional particle coordinatesxµ,

xµ(s) = xν(0) +
∫ s

0

dσ exp
( e

mc
Fµ

ν σ
)

uν(0) (11)

Unifying Eqs. (10) and (11), we obtain the following
transformation formula,

[
xµ(s)
uµ(s)

]
=


 1

∫ s

0

dσ exp
(

e
mcFµ

ν σ
)

0 exp
(

e
mcFµ

ν s
)


[ xν(0)

uν(0)

]
(12)

To be iteratively used for the infinitesimal intervalds, the
transformation (12) gives us a numerical integral formula-
tion which exactly utilizes the Lorenz transformation ofuµ

along the particle trajectory.
And then, almost same formula is also obtained for the

radiating electron,

[
xµ(s)
uµ(s)

]
=


 1

∫ s

0

dσ exp
(

e
mcHµ

ν σ
)

0 exp
(

e
mcH

µ
ν s

)

[

xν(0)
uν(0)

]
(13)

4 FORMULAS OF IRREDUCIBLE
REPRESENTATION

Before proceed to concrete numerical calculations, some
useful formulas of the irreducible representations of the
Lorentz group Lie algebra are summarized for later refer-
ence here. If we denote arbitrary unit vectors ase andb,
the following formula are satisfied,

(e •K)3 = (e •K)
(b • S)3 = −(b • S) (14)

[Si, Sj ] = εijkSk

[Si, Kj] = εijkKk

[Ki, Kj] = −εijkSk (15)

whereεijk denotes the Levi-Civita pseudotensor. More-
over, one can readily confirm the following identities too,

(b • S)(e •K)(b • S) = 0
(e •K)(b • S)(e •K) = 0 (16)

These formula can be effectively used in calculations of
exponential function in the formulas (12) and (13).

5 EXAMPLES OF NUMERICAL CALCULATION

The first example is an electron motion in pure magnetic
field, especially no radiation dumping case. In this case,
the identity (6) shows us special aspect, i.e., the formula
gives us numerical solutions which exactly satisfy the mo-
mentum conservation law. Adding to this, we find that the
exponential function in Eqs. (10) and (11) can result in the
following reduced expression,

uµ(s) =
[
1 − (b • S) sin

(
eB

mc
s

)

+ (b • S)2
(

1 − cos
(

eB

mc
s

))]
uµ(0) (17)

which makes the calculation time much shorter (whereb
is normalized unit vector ofB andB is its absolute value).
The positionxµ is also expressed in the same manner. The
figure 2 shows a typical example, the 3D electron motion
in so-called magnetic mirror profile. In Fig. 3, velocity
changes during the motion, which are caused by numerical
errors, are indicated for the ordinary Runge-Kutta method
and presented one, respectively. The initial electron energy
is taken to be 200 MeV. The simulation result shows us
that the presented method indeed can exactly conserve the
particle momentum.
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Figure 2: Electron motion in magnetic mirror profile
(200 MeV).

The next example is the main purpose of this paper,
the ultra-relativistic radiating electron. An electron orbit,
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Figure 3: Velocity change caused by numerical error.

which has strong radiation dumping, is shown in Fig. 4.
The initial electron energy is taken to be 500 GeV. In this
case, the ordinary Runge-Kutta method cannot work be-
cause the calculation is very sensitive for numerical errors.
On the other hand, the presented method still works well.
The figure 5 shows the change of the Minkowski norm
during the motion, which shows that the identity (6) ex-
actly satisfied even in this energy region (non-Hamilton
systems).
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Figure 4: Ultra-relativistic radiating electron motion
(500 GeV).
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Figure 5: Change of Minkowski norm.

6 SUMMARY

This paper has presented a precise numerical integrator for
the ultra-relativistic radiating electron based on the Lorentz

group Lie algebra. Some simple numerical calculations
show its validity. However, serious problem still exists in
the ultra-relativistic electron orbit calculation. It is well-
known that the Lorentz-Dirac equation is itself approxima-
tion for the case of weak radiation dumping[3]. To fully
treat strong radiation dumping some more modifications
are required.
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