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Abstract

Recently, due to advances in computers and data aquisi-
tion systems, the following type of measurement has be-
come more common: (1) Impress a given modulation on
a device to be tested. (2) Acquire a data stream, usually
at equally spaced sample intervals, of the response of the
system to the modulation. (3) Fit the data thereby ac-
quired to some nonlinear function set that might (or might
not!) describe the response of the device. In this paper
it is pointed out that by choosing to modulate the test pa-
rameter sinusoidally, and by fast-Fourier transforming the
acquired data stream, one unambiguously determines the
Tschebyshev expansion of the response function around
the working point, potentially yielding quantitative infor-
mation about high nonlinear orders in the system response.
The need for data fitting is thereby eliminated. A detailed
example, the analysis of the nonlinear phase-phase transfer
function in the Jefferson Lab injector, is presented.

1 ANALYSIS

The accelerator at Jefferson Lab acts like a LINAC in that
the particle orbit never entirely closes on itself. There-
fore, to analyse the performance of the accelerator, mea-
surements of the beam transfer maps take on fundamen-
tal significance; there is no notion of tune as in a ring. In
the course of analyzing such beam transfer maps, in par-
ticular the phase-phase transfer map between the chopping
system and main linac in the injector, a convenient means
was found for characterizing the system response, includ-
ing nonlinearities that might exist in the transfer map. This
type of analysis may be applied generally to measurements
where one perturbs some parameter, e.g. the orbit around
the working point of an accelerator, and measures the sys-
tem response to that perturbation at the same time.

In general, consider a measurement where a parameter,
x, is modulated between two limits, and simultaneously the
response of the system under test is recorded. An interest-
ing case is when the modulation is sinusoidal

δx = ∆x cos(ωt),

where∆x is the amplitude of the modulation andω is the
angular frequency of the modulation. For a given amplitude
∆x, the response defines a function with dimensionless ar-
gument on the domain [-1,+1] byY (δx/∆x) = y(δx).
If this function is expanded in an orthogonal series of
Tschebyshev polynomials

y(δx) = Y (δx/∆x) =
∞∑

n=1

anTn(δx/∆x),

then using the standard identity defining Tschebyshev poly-
nomials,Tn(cos θ) = cos(nθ), the amplitudes of the ex-
pansion coefficients appear directly as the size of the peaks
in the Fourier analysis of the output data

an =
1
π

∫ 2π

0

Y (cosωt) cos(nωt)d(ωt).

Examples of the types of distortions that correspond to
two of the Tschebyshev modes are shown in Fig. 1. In these
plots, the Tschebyshev modes are displayed, including a
random noise component added to the ordinate, to model
noise in the measurements, the peak to peak amplitude of
the noise being one tenth of the mode amplitude. If the
modulation is performed at a certain frequencyf = ω/2π,
and the noise level is the same as appears in the mode pat-
tern figures, then by Fourier analysis of the output of the
phase detector, one obtains the power spectra in Figs. 2 and
3. Modulation in then = 1 mode gives output only at the
first harmonic, modulation in then = 2 mode gives output
only at the second harmonic, modulation in then = 3 mode
gives output only at the third harmonic, and so forth. Con-
versely, if one sinusoidally modulates the input parameter
and Fourier analyzes the output response around a partic-
ular working point, the response function is resolved into
its Tschebyshev amplitudes, the expansion coefficient be-
ing the Fourier amplitude of the corresponding harmonic
of the modulation frequency.

In Figs. 1, the total number of points is 1020, and it is
assumed for concreteness that the sample rate is 60 Hz. A
1 Hz modulation was done, and it is clear that the signal to
noise in the measurement is good in a total measurement
time of 17 sec. It is also clear that this technique unam-
biguously establishes the response function, at least in a
neighborhood of the working point,without the need of do-
ing some form of nonlinear least fitting.

2 MEASUREMENT SCHEME

It has been known for many years that a good way to mea-
sure relative time-of-arrival of charged accelerator bunches
is to use longitudinal pickup cavities and precision RF
phase detectors. Such devices are used to set up, check, and
optimize the bunch length of the bunches emerging from
the Jefferson Lab injector [1]. In the “best” case, one could
in principle compress the bunch length up to the limit given
by the injected longitudinal emittance, the maximum per-
mitted extracted energy spread, and Liouville’s theorem on
conservation of phase space area. In practice, nonlineari-
ties in the bunching process, for example, from nonlineari-
ties in the RF fields, cause this best case limit to seldom be
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Figure 1: Mode patterns forn = 2 andn = 3; T1(x) = x.

Figure 2: Modulation spectra forn = 1 fundamental and
n = 2 second harmonic.

Figure 3: Modulation spectrum forn = 3.

achieved. Having a means to quantify and correct the bunch
length is clearly useful for speeding and automating the
optimization process. Tschebyshev analysis of the phase-
phase transfer map (M55) provides a systematic means of
quantifying the nonlinearities as the amplitude of certain
modes in phase-phase space. Given the measured ampli-
tudes, it is clear that the bunch length is made smaller to the
extent that the individual amplitudes can be made smaller.

In terms of the Tschebyshev modes, then = 1 mode
gives the slope of the phase transfer function. Making the
n = 1 term in the expansion zero (a1 = 0), is equivalent to
the demand that the bunch should be going through a lon-
gitudinal waste (σ55 = 0). Demanding thata2 = 0, means
that bunch particles starting at the front of the bunch, the
back of the bunch, and the middle of the bunch all arrive at
the same time, given thata1 has previously been corrected
and the higher order terms are smaller than these. In this
case the nonlinear transfer matrix elementT555 is zero for
the bunching system. Settinga3 to zero, provides the first
term that can correct asymmetries between the front and
back of the bunch.

The level of correction that has been achieved in the ref-
erences can be categorized. For example, Dowell,et. al.,
[2] and Carlsten [3] have corrected then = 1 andn = 2
modes. Likewise, Krafft [1] has corrected throughn = 3,
at least for the low space charge case reported.

3 EXPERIMENTAL RESULTS

At Jefferson Lab, for many years it has been possible to
measure the phase-phase correlation function (M55) be-
tween the beam chopping system in the injector and strate-
gically placed longitudinal pickup cavities in the injector.
An illustrative case is presented in Figures 4 and 5. In Fig. 4
an experimental aquisition of a 600 point phase-phase cor-
relation function is given by the unconnected dots. Each
dot was obtained on a separate beam pulse and the modula-
tion of the input phase was chosen to be in a triangle wave
so that uniform filling of the display is obtained [4].

Next the modulation was changed to be fully sinusoidal,
all other conditions remaining the same. By the above anal-
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ysis, the correlation function should be resolved into its
Tschebyschev modes by examining the Fourier amplitudes
of the output phase modulation. In Fig. 5, a Fourier analysis
of the output phase is given which clearly shows the correct
harmonic structure. The modulation frequency was 65 Hz,
which is aliased to 5 Hz with a 60 Hz sample rate, and the
total number of points was 1020 (17 sec). The resulting
Tschebyshev expansion coefficients are shown in Table 1.
Fig. 4 shows the function that results when the modes up to
n = 5 are synthesized. The expansion clearly reproduces
the measured phase-phase correlation function.

Figure 4: Experimental phase-phase transfer function ob-
tained at the Jefferson Lab injector, and its synthesis using
the Tschebyshev expansion (displaced for comparison).

Figure 5: Output phase spectrum,f=65 Hz.

Because as part of the measurement process the power
spectrum is obtained, one can estimate the relative error of

n an (◦)
1 -0.458
2 0.599
3 0.072
4 -0.182
5 -0.031

Table 1: Expansion coefficients for phase-phase transfer
function in Fig. 4.

the measurements. Clearly, the peak atn = 5 can be distin-
guished with aS/N about 10 in Fig. 5. As the expansion
coefficient isa5 = −0.031◦, the distortion in arrival time
cleanly measured isa5 ∗ 668 psec/360◦, or 58 fsec. It is
possible to discern modulations perhaps one-fifth intense,
leading to an overall resolution of order 25 fsec. This ex-
perimental result has precision comparable to the optical
techniques that have been used to determine bunch length,
but the present measurement provides much more informa-
tion which can be used to tune the bunch length, in that the
types of distortion in the phase space are given directly.

4 CONCLUSIONS

The conclusions of this work are:

• Nonlinear transfer maps may be conveniently anal-
ysed experimentally by performing modulation mea-
surements, and by quantifying the results obtained us-
ing Tschebyshev polynomials.

• The nonlinearity is minimized when the magnitude of
the expansion coefficients is minimized.

• Measuring the phase-phase correlation function pro-
vides a useful means of obtaining data to minimize
the bunch length.

It should be noted that the Tschebyshev expansion tech-
niques mentioned above are useful in quantifying measure-
ments of transverse beam optical nonlinearities using trans-
verse modulation of the beam. Multiple dimensions may
be analyzed in the same way using multiple modulation
frequencies. This work supported by U. S. DOE Contract
No. DE-AC05-84ER40150.
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