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Abstract

A method of selecting a favorable, with respect of the
beam loading effects, multi-bunch (M bunches) filling
pattern for a partially filled ring (harmonic number N) is
presented. Starting with a standard set of wake field-cou-
pled equations of motion, the beam loading effects (higher
order mode loss) are evaluated analytically (using contour
integration technique) for a partially filled ring (M < N).
Resulting analytic formula describe the mode loss experi-
enced by a given bunch within a train, as a function of
the resonant frequency and the quality factor of the cou-
pling impedance, Q. The analytic formula reveals filling
pattern dependent resonant frequency regions, where the
beam loading effects are highly suppressed. A possible
application of the presented formalism is that for a given
configuration of cavity resonances one can design the op-
timum bunch filling pattern.

1 INTRODUCTION

While coupled multi-bunch motion for a symmetric
configuration of populated buckets in a storage ring has
been extensively studied and the stability problem has a
closed analytic solution [1] for most standard wake fields
a fully populated ring is rarely the case for any opera-
tional mode of a realistic synchrotron.

We present a rigorous treatment of the beam loading
effects for a non symmetric configuration of populated
buckets. The core of this paper is an analytic method, in-
volving contour integration in complex frequency do-
main, which yields a closed expressions describing the
mode loss due to a general resonant impedance, for the
case of partially filled ring.

The parasitic mode loss is expressed explicitly in of:
the bunch index, the resonance frequency and the quality
factor of the impedance peak. Superimposing many para-
sitic cavity modes one can use the above formulas to
choose appropriate tuning of existing configuration of
parasitic modes to minimize mode loss effects, or to op-
timize the filling bunch pattern (number of bunches in a
train) to suppress the beam loading effects.

2 COUPLED MULTI-BUNCH MOTION

We assume a storage ring of a harmonic number N
populated by a train of M consecutive bunches (M ≤ N).
For the dipole mode consideration, it will be sufficient to
model each bunch as a macro particle combining intensity
of the entire bunch. To describe a coupled motion of a
system of M bunches we represent a state of the system
at a given time by a vector. Its n-th component describes
the longitudinal coordinate of the n-th bunch (yn is the
phase of the bunch with respect to the center of an unper-
turbed bucket).

Collective synchrotron motion of the system on M
bunches coupled via wake fields can be described by the
following set of equations of motion [1].
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Here W' and W" are the time derivatives of the wake func-
tion, ω is the unperturbed synchrotron frequency, η is the
phase slip factor, c is the velocity of light, r0 is the clas-
sical proton radius, ω0 is the revolution frequency and T0

is the revolution period. The index k gives the sum of the
wake fields from all previous turns.

One can identify the first term in the right hand side of
Eq.(1) with the mode loss [2]−[3] suffered by the n-th
bunch. It explicitly depends on the bunch index n. One
can notice in passing, that the mode loss can be viewed as
a shift of the minimum of the potential well − the syn-
chronous phase shift −  fn.
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The term proportional to yn in the right hand side of
Eq.(1) can be absorbed by the synchrotron frequency. This
is known as the synchrotron frequency shift, ∆ωn, due to
the potential well distortion [3]−[4] (change of its curva-
ture) and it is given by the following formula

∆ωn
2 = A  

1
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The resulting set of equations, Eqs.(1)−(3), along with a
convenient representation of the wake field coupling, will
be analyzed in the complex frequency domain later in the
paper.

3 PARASITIC MODE LOSS −
PARTIALLY FILLED RING

To evaluate the mode loss term (or the incoherent syn-
chrotron tune shift) it is convenient to express it in terms
of the longitudinal coupling impedance via the inverse
Fourier transform. The resulting expression, Eq(2) is re-
written as follows
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Infinite summation over k can be carried out explicitly
using a trivial version the Poisson sum identity. This
yields the following expression
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Applying a simple sum identity to Eq.(5) one can rewrite
it in the following form
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the last summation (over m) in Eq.(6) can be carried out
explicitly. The resulting formula is written as follows
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The second equality in Eq.(7) highlights generic sampling
structure of the above expression. Applying the Poisson
sum identity to Eq.(7) yields the following expression
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Introducing two kinds of generic integrals, namely:
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one can express the mode loss term, Eq.(8), in the follow-
ing compact form
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Figure: 1 Complete set of singularities along with the
appropriate choice of integration contours for both I+(k)
and I

−
(k) − C+ and C− respectively.

Assuming general form of the longitudinal impedance of
a resonant structure, given by the following standard ex-
pression:

Z||(ω) = 
R

1 + iQ ( )ω
ωr

−
ωr
ω

  =  −  iR  
ωr
Q   

ω
(ω − ω+)(ω − ω−)   , (11)

where R is the shunt resistance, Q is the quality factor of
the resonator and ωr is its resonance frequency, the singu-
larities of Z||(ω) are defined by the following pair of com-
plex poles ω± located in the upper half plane
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ω± = ωr(±1 + iδ),      δ = 
1

2Q
 << 1   . (12)

The integrals, I±, can be easily evaluated through contour
integration via Cauchy's integral theorem. The choice if
the integration contours is illustrated in Figure 1.

After evaluating the integrals, I±, explicitly [4], one
can rewrite Eq.(10) in the following closed form
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Denoting the expression in curly bracket by 
~
fn, one can

introduce a dimensionless mode loss. Figure 2 illustrates
a family of curves for different values of n, calculated ac-
cording to Eq.(13).
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Figure: 2 Dimensionless mode loss, 
~
fn, suffered by the n-

th bunch − a discrete set of resonant frequencies, ωr,
defined by the fractional, l / M , multiples of Nωo.

As one can see Eq.(13) has a simple asymptotics for the
resonance frequencies, ωr, in the vicinity of the integer
multiples of the r.f. frequency, kNωo, and away from
them. These two asymptotic regions are determined by
the relative strength of the expressions appearing in the

denominator of Eq.(13), namely: sin2(πx) and (πx)2
 
δ2.

One can notice, that for the resonance frequencies in ‘the
immediate vicinity of the integer multiple of the r.f. fre-
quency’ the resulting mode loss does not depend on the
bunch index, n, and it is governed by the quality factor,
Q. Conversely,  for the resonance frequencies outside that
region, the resulting mode loss does not depend on the
quality factor, Q, and it is governed strictly by the bunch
index, n, which explains why the so called ‘de-Q-ing’ of
the modes does not have any effect on the beam loading
effects for a partially filled ring.

Furthermore, the structure of Eq.(13) − zeros of
sin(πxM) − reveal another finer level of symmetry defined
by the fractional, l / M , multiples of Nωo. The mode

loss vanishes up to terms of O(δ2), for a discrete set of
resonance frequencies marked in Figure 2 (arrows).

4 SUMMARY − OPTIMIZED FILLING
PATTERN

The mode loss experienced by a given bunch within
the train, were calculated analytically (using contour inte-
gration technique) for a partially filled ring. Resulting
simple analytic formulas express both quantities, as a
function of the resonance frequency, ωr, and the quality
factor of the coupling impedance, Q.

The formula reveals a set of characteristic resonant fre-
quencies, spaced by the multiples of Nωo/M, at which the
potential well distortion characteristics are not only bunch
independent, but also considerably smaller (it scales as
MQ−2).

Finally, for a given configuration of cavity resonances
one can get immediately a simple quantitative answer in
terms of the mode loss and the synchrotron tune shift ex-
perienced by each bunch along the train [4]. These ana-
lytic expressions give one an insight into various opti-
mizing schemes; e.g. to modify the existing configura-
tion of parasitic cavity resonances (via frequency tuning),
so that the resulting potential well distortion effects are
minimized. One can also explore existence of the beam
loading suppression frequencies, which depends on the
bunch train index, M, to design an optimum filling pat-
tern for a storage ring, e.g. a train of trains to maximize
the net beam intensity, which is especially useful for a
synchrotron light source to maximize its brightness and
still avoid undesirable mode loss effects.
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