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Abstract ripple effect [10, 11].

The long-term behaviour of the non-linear single-particle
dynamics is considered for the 4Deron map. The dy- 2 ANALYSIS OF THE PHASE SPACE

namic aperture is defined as the average of the particle I(\?Vse consider a arid of initial conditions on the ol
boundary over several ratios of emittances. Using this de 9 plape y).
with p, = p, = 0 and we track the orbit for a large number

inition, survival plots turn out to decay with the inverse of" fturns. From the tracking results, we evaluate the number
the logarithm of the number of turns. We also compare the 9

extrapolation of the dynamic aperture with the prediction Lrt]lljlr::ajyfruep ltj(;r\:\(/:l? the poa;r;]c;e”l]ztlséibI_(rahzr}?ethueetr\]/i/o
of the maximal Lyapunov exponent. q s, vy) q

cies are computed using an interpolation of the FFT plus

Hanning filter [12]. For regular trajectories the frequencies
1 INTRODUCTION are well defined with precision of the order bfN* [12].

Modern hadron colliders based on superconducting mafor chaotic orbits instead the frequencies are not defined

nets suffer from the unavoidable effect of field-shape disand the algorithm provides values that vary along the dis-

tortions, particularly harmful during the injection plateaucrete timeN, and that do not converge fof — oc.

This critical period can last a large number of turns making The results are presented in various forms.

difficult to evaluate the single-particle stability with com- Long-term plot each initial condition(z, y) is plotted

puter simulations. In the case of the CERN Large Hadrounsing a different marker according to the number of turns

Collider [1], the injection process will last far0” turns. N at which particle loss occurs.

On the other hand, numerical simulations based on sym- Network of resonance®nly the initial conditiongz, )

plectic tracking can hardly react®® — 10° turns, also in locked on resonances are drawn: they satisfy

consideration of the fact that a dense sampling of the phase

space is crucial to obtain significant results. Three main qui +pre=1l+e¢ qg,p,l e’z Q)

approaches have been proposed in the past to speed-up the

investigations on beam stability: the determination of th&Ve use the value = 10~%. This plot directly displays the

onset of chaotic behaviour using the maximal Lyapunosize of resonances, their position in phase space, and their

exponent [2, 3], the evaluation of the drift in the spaceelation with the dynamic aperture shown in the long-term

of approximated invariants carefully evaluated through nuslot.

merical methods [4], and the visualization of the dynamic Survival plot the survival timeV is shown as a function

aperture reduction with increasing number of turns througbf D, the average value of the initial conditions stable for

survival plots [5, 6, 7]. N turns.
In this paper, we investigate the survival plots of the 4D
Henon map, with extended numerical methods. En

The Hénon map [8] represents a simplified model of 4D o7 -
betatronic motion where the coupling with longitudinal dy- .
namics and the modulation of the linear frequencies are
neglected. Using this map, we investigate the dynamics
with numerical simulations and we propose phenomeno-
logical scenarios to interpret the results. We recall a way
to define the dynamic aperture [9] and we compute it as a
function of the number of turnd&’. The result can be inter-
polated with a three-parameter formula, justified in terms
of the Nekhoroshev and KAM theorems. The interpolation
fits very well with the numerical data and agrees with the : -
prediction of the onset of chaos provided by the Lyapunov ~ © 5555255 04 0= o0& 07 08
exponent. Our results can be extended to a more realis- x (a.u.)

tic accelerator model, describing 6D motion including thé-igure 1: Long-term plot of the éhon map at,, = 0.168,
v, = 0.201: empty circles represent initial conditions sta-

*Work partially supported by EC Human Capital and Mobility contractpy|a up to107 turns; full circles represent unstable initial

Nr. ERBCHRXCT940480. diti I | d to shorter stabilit
Frsont adiress: CERN PS Division ;:_on |)|ons (smaller circles correspond to shorter stability
imes).
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In Fig. 1 a dense long-term plot for theeH6n map with  lower thanNV occurs. The dynamic aperture is
linear frequencies, = 0.168, v, = 0.201 is shown. A 14
rectangular grid of initial conditions is iterated for at most /2
107 turns. In the inner region all the particle are stable for at D= (/ [(6; N)]* sin 29d9> 3)
least10” turns. There are no holes, at least at the resolution 0

used of our grid scan. After that, one finds a rather irregulafhis definition differs from the usual one [6, 7], where, to
but sharp border of instability: outside the border, one h%fbeed up simulations, the scan is made only along the diag-
a chaotic sea of initial conditions that are lost betw&&h  gnal of the spacér, ).
and10 turns. When the definition (3) is implemented in a computer
In Fig. 2 the network of resonances for the same modghde, one has to carry out two discretizations: one over the
of Fig. 1is shown. One finds very large stable resonanceggial variabler and one over the angular varialgle Let
moreover, the mechanism of particle loss due to the diffun; — (r,..... —7in) /N> andAd = /2N, be the step size
sion along the resonant channels or due to resonance crogs; ande respectively. The total error associated with the

ing does not seem to be very relevant. The bulk of longjynamic aperture estimate can be obtained using gaussian
term losses occurs in the wide chaotic band where no resam in quadrature

onance structures are visible. This chaotic band is charac-
terized by isolated points locked on low order resonances, \/ oD Ar\ 2 oD A\ 2
»-y(53) ~(577)

that appear in the figure as a set of scattered dots. The same -
) or 2 06 2
mechanism of loss has been observed for other values of the

betatron frequencies and for other models, as a 4D Modg} estimate the derivatives @, we replace (3) with the

(4)

of the LHC [3]. simple average over
—~0.8
ER 9 [7/2
Zo7 | D= ;/ r(0; N)dd =< r(9;N) > . (5)

L 0
oo Using this formula the associated error reads
0.5 =

: (Ar)2  or,_, (AB)?

L AD = = | >2 6
> \/ r telgg >t ©)
3 E Therefore, to optimize the integration ste@s; must be
02 f equal toAd times< | 25| >.

o1 F 4 PREDICTION BASED ON EXTRAPOLATION
S BN B R B R N % ACY: In Fig. 3 we showD(N) versusN for the same model of
x (a.u) Fig. 1, carrying out simulations up 108 turns. A very fine

Figure 2: Network of resonances of theibn map at, = phase space scan (120 radial steps from 0.3 to 0.8 and 60

0.168, v, = 0.201: black dots represent initial conditions angular steps) has been used in order to obtain a very high
locked on resonances up to order 15. accuracy (error of the order of 1%).
From these results we conclude that there is a ratherye interpolate the dynamic aperture with an inverse log-
sharp border that separates stable from unstable initial COfyithmic law. Indeed. the phase space is divided into two
" ; 8- . . .
ditions for the considered number of turnk){ — 10°);  regimes. An inner regiowhere almost all the phase space
long-term particle losses mainly occur in wide chaotiG foliated into KAM tori, except a very small fraction
bands where all the integrable structure has been wipgthere the Arold diffusion can take place over the res-
out; the mechanism of diffusion _along the resonant chaynance web [14]. This region appears in simulations as
nels and due to resonance crossing are rather weak. g “fy|” domain of initial conditions stable for extremely

high number of turns. Its average radius is called. An

3 DYNAMIC APERTURE AND ASSOCIATED outer regionwhere almost all the foliation of phase space
ERRORS in KAM tori has been destroyed, and only a wide chaotic

In a previous work [9] we defined the dynamic apertur&€@ iS left. Since we are close to the last KAM torus, we as-
as the average radius over the phase space area stableSHP€ that in fchls region the particles escape to infinity with
N turns. Particles are started along a 2D polar grid in th&'€ rate provided by the Nekhoroshev estimate [15]:

coordinate spacer, y):
(7)

N(r) = Ngexp (r*)l/ﬂ,

x =rcosf y=rsinf (2) r

with p, p, equal to zero. Let(0; V) be the last stable ini- whereN (r) is the number of turns that are estimated to be
tial condition along) before the first loss at a turn numberstable for particles with initial amplitude smaller than
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We have also computed the estimate of the chaotic bor-
der through the Lyapunov exponent, using the same type of
definition for the dynamic aperture, where ney) is the
amplitude of the particle immediately before the first par-
ticle alongf whose Lyapunov exponenet is greater than an
appropriate threshold as described in Ref.[3]. The results
are shown in Fig. 3. The Lyapunov guess of the chaotic
border seems to converge rather rapidly (when compared
to tracking) to the value ab ..

Finally we evaluated the error d,, by computing the
interval of 95 % confidence level around the interpolating
function (8), and we found,, = 0.4750+0.0018. The er-

57" o ror is so small mostly because of the large number of turns

D (a.u.) used in the survival plot and of the fine grid scan applied in
Figure 3: Dynamic aperture versus number of turns (dotghe evaluation oD (V).

for the Hénon map at, = 0.168, v, = 0.201; analytic
interpolation (solid line) and extrapolation at infinity (dot-
ted line). Prediction of the chaotic border according to the

according to Eq. (6). to the analysis and to the interpretation of the tracking data.

Special thanks to S. Bongini, M.dgé, J. Ellison, J. Irwin,
Using the information from KAM theorem (the existenceF. Schmidt and B. Warnock, for constructive discussions.
of a positiveD,) and from the Nekhoroshev theorem (the
inverse log decaying of the dynamic aperture), one obtains
the following equation
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