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Abstract

The long-term behaviour of the non-linear single-particle
dynamics is considered for the 4D H`enon map. The dy-
namic aperture is defined as the average of the particle loss
boundary over several ratios of emittances. Using this def-
inition, survival plots turn out to decay with the inverse of
the logarithm of the number of turns. We also compare the
extrapolation of the dynamic aperture with the prediction
of the maximal Lyapunov exponent.

1 INTRODUCTION

Modern hadron colliders based on superconducting mag-
nets suffer from the unavoidable effect of field-shape dis-
tortions, particularly harmful during the injection plateau.
This critical period can last a large number of turns making
difficult to evaluate the single-particle stability with com-
puter simulations. In the case of the CERN Large Hadron
Collider [1], the injection process will last for107 turns.
On the other hand, numerical simulations based on sym-
plectic tracking can hardly reach105 − 106 turns, also in
consideration of the fact that a dense sampling of the phase
space is crucial to obtain significant results. Three main
approaches have been proposed in the past to speed-up the
investigations on beam stability: the determination of the
onset of chaotic behaviour using the maximal Lyapunov
exponent [2, 3], the evaluation of the drift in the space
of approximated invariants carefully evaluated through nu-
merical methods [4], and the visualization of the dynamic
aperture reduction with increasing number of turns through
survival plots [5, 6, 7].

In this paper, we investigate the survival plots of the 4D
Hènon map, with extended numerical methods.

The Hènon map [8] represents a simplified model of 4D
betatronic motion where the coupling with longitudinal dy-
namics and the modulation of the linear frequencies are
neglected. Using this map, we investigate the dynamics
with numerical simulations and we propose phenomeno-
logical scenarios to interpret the results. We recall a way
to define the dynamic aperture [9] and we compute it as a
function of the number of turnsN . The result can be inter-
polated with a three-parameter formula, justified in terms
of the Nekhoroshev and KAM theorems. The interpolation
fits very well with the numerical data and agrees with the
prediction of the onset of chaos provided by the Lyapunov
exponent. Our results can be extended to a more realis-
tic accelerator model, describing 6D motion including the
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ripple effect [10, 11].

2 ANALYSIS OF THE PHASE SPACE

We consider a grid of initial conditions on the plane(x, y),
with px = py = 0 and we track the orbit for a large number
of turns. From the tracking results, we evaluate the number
of turnsN up to which the particle is stable and the two
nonlinear frequencies(νx, νy) of the motion. The frequen-
cies are computed using an interpolation of the FFT plus
Hanning filter [12]. For regular trajectories the frequencies
are well defined with precision of the order of1/N4 [12].
For chaotic orbits instead the frequencies are not defined
and the algorithm provides values that vary along the dis-
crete timeN , and that do not converge forN →∞.

The results are presented in various forms.
Long-term plot: each initial condition(x, y) is plotted

using a different marker according to the number of turns
N at which particle loss occurs.

Network of resonances: only the initial conditions(x, y)
locked on resonances are drawn: they satisfy

qν1 + pν2 = l + ε q, p, l ∈ Z (1)

We use the valueε = 10−4. This plot directly displays the
size of resonances, their position in phase space, and their
relation with the dynamic aperture shown in the long-term
plot.

Survival plot: the survival timeN is shown as a function
of D, the average value of the initial conditions stable for
N turns.

Figure 1: Long-term plot of the H`enon map atνx = 0.168,
νy = 0.201: empty circles represent initial conditions sta-
ble up to107 turns; full circles represent unstable initial
conditions (smaller circles correspond to shorter stability
times).
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In Fig. 1 a dense long-term plot for the H´enon map with
linear frequenciesνx = 0.168, νy = 0.201 is shown. A
rectangular grid of initial conditions is iterated for at most
107 turns. In the inner region all the particle are stable for at
least107 turns. There are no holes, at least at the resolution
used of our grid scan. After that, one finds a rather irregular
but sharp border of instability: outside the border, one has
a chaotic sea of initial conditions that are lost between106

and10 turns.
In Fig. 2 the network of resonances for the same model

of Fig. 1 is shown. One finds very large stable resonances;
moreover, the mechanism of particle loss due to the diffu-
sion along the resonant channels or due to resonance cross-
ing does not seem to be very relevant. The bulk of long-
term losses occurs in the wide chaotic band where no res-
onance structures are visible. This chaotic band is charac-
terized by isolated points locked on low order resonances,
that appear in the figure as a set of scattered dots. The same
mechanism of loss has been observed for other values of the
betatron frequencies and for other models, as a 4D model
of the LHC [3].

Figure 2: Network of resonances of the H`enon map atνx =
0.168, νy = 0.201: black dots represent initial conditions
locked on resonances up to order 15.

From these results we conclude that there is a rather
sharp border that separates stable from unstable initial con-
ditions for the considered number of turns (107 − 108);
long-term particle losses mainly occur in wide chaotic
bands where all the integrable structure has been wiped
out; the mechanism of diffusion along the resonant chan-
nels and due to resonance crossing are rather weak.

3 DYNAMIC APERTURE AND ASSOCIATED
ERRORS

In a previous work [9] we defined the dynamic aperture
as the average radius over the phase space area stable for
N turns. Particles are started along a 2D polar grid in the
coordinate space(x, y):

x = r cos θ y = r sin θ (2)

with px py equal to zero. Letr(θ;N) be the last stable ini-
tial condition alongθ before the first loss at a turn number

lower thanN occurs. The dynamic aperture is

D =

(∫ π/2
0

[r(θ;N)]4 sin 2θdθ

)1/4
. (3)

This definition differs from the usual one [6, 7], where, to
speed up simulations, the scan is made only along the diag-
onal of the space(x, y).

When the definition (3) is implemented in a computer
code, one has to carry out two discretizations: one over the
radial variabler and one over the angular variableθ. Let
∆r = (rmax−rmin)/Nr and∆θ = π/2Nθ be the step size
in r andθ respectively. The total error associated with the
dynamic aperture estimate can be obtained using gaussian
sum in quadrature

∆D =
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∂r
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2

)2
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(
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)2
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To estimate the derivatives ofD, we replace (3) with the
simple average overθ

D =
2

π

∫ π/2
0

r(θ;N)dθ ≡< r(θ;N) > . (5)

Using this formula the associated error reads

∆D =

√
(∆r)2

4
+ < |

∂r

∂θ
| >2

(∆θ)2

4
(6)

Therefore, to optimize the integration steps,∆r must be
equal to∆θ times< |∂r∂θ | >.

4 PREDICTION BASED ON EXTRAPOLATION

In Fig. 3 we showD(N) versusN for the same model of
Fig. 1, carrying out simulations up to108 turns. A very fine
phase space scan (120 radial steps from 0.3 to 0.8 and 60
angular steps) has been used in order to obtain a very high
accuracy (error of the order of 1%).

We interpolate the dynamic aperture with an inverse log-
arithmic law. Indeed, the phase space is divided into two
regimes. An inner regionwhere almost all the phase space
is foliated into KAM tori, except a very small fraction
where the Arnold diffusion can take place over the res-
onance web [14]. This region appears in simulations as
a “full” domain of initial conditions stable for extremely
high number of turns. Its average radius is calledD∞. An
outer regionwhere almost all the foliation of phase space
in KAM tori has been destroyed, and only a wide chaotic
sea is left. Since we are close to the last KAM torus, we as-
sume that in this region the particles escape to infinity with
the rate provided by the Nekhoroshev estimate [15]:

N(r) = N0 exp
(r∗
r

)1/κ
, (7)

whereN(r) is the number of turns that are estimated to be
stable for particles with initial amplitude smaller thanr.
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Figure 3: Dynamic aperture versus number of turns (dots)
for the Hènon map atνx = 0.168, νy = 0.201; analytic
interpolation (solid line) and extrapolation at infinity (dot-
ted line). Prediction of the chaotic border according to the
Lyapunov exponent (stars). The error bars are computed
according to Eq. (6).

Using the information from KAM theorem (the existence
of a positiveD∞) and from the Nekhoroshev theorem (the
inverse log decaying of the dynamic aperture), one obtains
the following equation

D(N) = D∞

(
1 +

b

logκ(N/N0)

)
(8)

We tried to interpolate the data shown in Fig. 3 with this
formula using three free parametersD∞, b and the expo-
nentκ. We fixedN0 to one by using the heuristic argument
thatD(1) = ∞.The solution is found by minimizing the
value of theχ2 function, i.e.

χ2 =
1

J − 3

J∑
j=1

(D(Nj)− D̂(Nj))2

σi
(9)

where the interpolated dynamic apertureD̂(Ni) according
to Eq. (8) is evaluated at the turn numberNi, and

√
σi is

the error estimated through Eq. (6). It turns out that it is
rather difficult to determine the exponent with a high pre-
cision. For instance, if we consider all the exponents that
provide aχ smaller than0.7, that corresponds in our case
to a confidence level of95%, we obtainκ ∈ [0.9, 2]. The
optimal exponent for our case turns out to be around1.5.
The interpolation is shown in Fig. 3 as a solid line, and
agrees very well with tracking data. Indeed, a refined ver-
sion of the Nekhoroshev theorem [16] leads to the estimate
κ = (1+d)/2, whered is the number of degrees of freedom
of the particle motion. In our case we haveκ = 1.5. This
is in agreement with our simulations, however the theoreti-
cal estimate ofκ is still quite controversial. For instance in
the older Ref. [17, 18] the expected value ofκ for our case
was estimated to be 3. Additional checks for higher dimen-
sions would be highly desirable in order to cross-check the
optimal estimate of the exponent with the validity of our
scenario.

We have also computed the estimate of the chaotic bor-
der through the Lyapunov exponent, using the same type of
definition for the dynamic aperture, where nowr(θ) is the
amplitude of the particle immediately before the first par-
ticle alongθ whose Lyapunov exponenet is greater than an
appropriate threshold as described in Ref.[3]. The results
are shown in Fig. 3. The Lyapunov guess of the chaotic
border seems to converge rather rapidly (when compared
to tracking) to the value ofD∞.

Finally we evaluated the error onD∞ by computing the
interval of 95 % confidence level around the interpolating
function (8), and we foundD∞ = 0.4750±0.0018. The er-
ror is so small mostly because of the large number of turns
used in the survival plot and of the fine grid scan applied in
the evaluation ofD(N).
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