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Abstract

We describe a new microwave generation mechanism
involving a scalloping annular electron beam.  The beam
interacts with the axial electric field of a TM0n mode in a
smooth circular waveguide through the axial free-electron
laser interaction, in which the beam ripple period is
synchronous with the phase slippage of the rf mode
relative to the electron beam.  Due to nonlinearities in the
orbit equation, the interaction can be made autoresonant,
where the phase and amplitude of the gain is independent
of the beam energy.

1  INTRODUCTION

In this paper, we will introduce a new amplifier
interaction mechanism between an annular electron beam
and a fast-wave rf mode in a smooth waveguide, in which
the electron beam is radially rippled to establish
synchronism.  There is a uniform, axial magnetic field,
and the beam ripple is caused by injecting the beam either
displaced from its equilibrium position or with some
initial radial velocity.  The rf mode profile is unperturbed
in the interaction region, leading to a smooth transition
between the input signal and the growing mode and also
between the growing mode and the output signal.  The
beam interacts with the axial electric field of a mode with
a phase velocity greater than the speed of light and is
bunched axially, and thus this interaction is in the class of
the axial free-electron laser.  We demonstrate this
interaction in Fig. 1, where a TM02 mode is used and the
beam oscillates about the radius where there is a null in
the axial electric field.  Assume that the axial electric
field opposes the electronic motion at position A, where
the electron is at a radius greater than the null of the axial
field.  As the electron travels to the right, the rf phase
slips by because the phase velocity is greater than the
speed of light.  At position B, the electron is now at a
radius less than the null of the axial field.  If exactly one-
half of an rf wavelength has slipped by the electron, the
axial field at this location will also oppose the electronic
motion, and a synchronous interaction between the
electron and the rf will be established.  The single-particle
synchronism equation,
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is exactly the same as for all FEL interactions (where w

is the radian mode frequency, c  is the speed of light, bz

is the electron’s axial velocity normalized to the speed of
light, vp  is  the phase velocity of  the  rf mode, and lr  is

Figure 1.  Rippled beam interaction, showing single
electron synchronism.

the period between ripples).  The resonant axial electric
field seen by an electron at an arbitrary phase is given by

    E Ak J k r k z k zz c c o r r= +k f1( ) cos( ) cos( )   ,   (2)

where the mode has a maximum on-axis axial field
strength of A, kc  is the mode’s radial wavenumber, k  is

the maximum ripple amplitude, ro  is the equilibrium

annulus radius, kr  is the ripple wavenumber

( kr r= 2p l/ ), and f  is the relative phase between the rf

and the electron.  For an intense electron beam, Eqn. (1)
is somewhat modified by the effects of the axial space-
charge forces between particles; we will derive the more
general dispersion relation in Section 3, which we will
then use to numerically calculate the growth rate of the
mode in Section 4.  Note that this interaction vanishes on
axis, and is only suitable for an annular electron beam.
This interaction shares some features with the cyclotron
autoresonance maser (CARM) interaction [1].  In
particular, we will see that due to the inherent
nonlinearities in the orbit equation, the rippled beam
interaction can stay in resonance as either the axial
magnetic field or the beam energy is changed,
demonstrating autoresonance characteristics.

2 ORBIT EQUATIONS

The radial equation of motion of the center of an annular
beam in a uniform axial magnetic field is
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where a dot refers to a time derivative, g  is the

relativistic mass factor, m  and e are the electronic mass
and charge, respectively, Er  is the radial space-charge

force at that point, g *  is the effective relativistic mass

factor from the beam’s axial velocity only
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 is the azimuthal velocity of the

center of the annulus, B is the total axial magnetic field.
We assume that the radius of the annulus center is very
close to an equilibrium radius ro , and can be written as

r r ro= + d .

After reducing Eqn. (3) [2], the equation for the
equilibrium radius becomes
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where I mc eA = 4 3pe / , $r  is the injection radius, and

( )b cm eB I IA z= g gg b/ / *
2 24 .  The radial displacement

from the equilibrium orbit is then to lowest order
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where k  is the maximum orbit displacement and f  is the

phase of the oscillation.  The ripple period is given by

( )l p b gr z o oc mr eB r r= +2 22 4 4/ $ / .  The average axial

velocity is
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where the rms azimuthal velocity is
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and the rms radial velocity is
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3  SINGLE MODE DISPERSION RELATION

We can use standard techniques to derive the single mode
dispersion relation [2,3,4], which becomes
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where C is Pierce’s gain parameter, defined by

C K Re o
3

12= b b/ , G  is the exponential growth rate of

the mode (all rf terms vary as e z-G ), b w be zc= / ,

k c=w / , b w1 = / vp , kc  is the mode’s cutoff

wavenumber, R m c eIo z= 2 3 2
g b( ) / , K  is the peak

magnitude of the synchronous electric field (Eqn. (2))
squared divided by the product of four times the power in

the waveguide times b1
2 , and $bq

2  is the square of the

reduced plasma wavenumber, given by
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where rw  is the wall radius, co  is the geometrical factor
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4 NUMERICAL EXAMPLES

In this section, we present some examples in which we
numerically solve Eqn. (9) along with the orbit equations.
For our nominal case, we will assume a 4.5-kA, 650-keV
electron beam with an annulus radius of 2.9 cm in a
waveguide with radius 3.37 cm.  A 17-GHz rf signal in
the TM02 mode will have a cutoff wavenumber of

kc = 1638.  m-1 in this waveguide, with an axial

wavenumber of b1 316 4= .  m-1 .  We will additionally

assume that there is an inner conductor in the waveguide,
located at the radius of the first axial electric field null of
the TM02 mode (at 1.47 cm), which will not affect the
mode pattern, but will reduce the power required for a
given field strength.  For a TM02 mode with on-axis
amplitude A, the power required in the mode is

( )P Areq = -2 76 43 10.  watts.  The space charge term used

in the dispersion relation is $ . /b bq z
2 30 00358= .

Our nominal case will be a 10% ripple with a period
of 5.19 cm (an axial field of 0.40 T).  This ripple period
and ripple amplitude leads to a gain of about 26 dB per
meter of interaction.  We plot the normalized electronic

admittance ( ) ( )( )2 1
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Fig. 2, along with the normalized circuit admittance
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b / , as a function of

jG  (the dashed line is the circuit admittance and the solid

line is the electronic admittance).  The dispersion relation
is satisfied where these two curves meet, in which case G

is purely imaginary (there is no gain).  Since the
dispersion relation is quartic, there will always be four
roots, and in order to have gain, there must be only two
intersections between  these  two curves (as in Fig. 2).  In
order to have a root with gain, as the circuit admittance
crosses the jG  axis, it must pass through the left gap

where the electronic admittance separates due to the slow
space-charge wave [3].  With small ripple amplitudes, we
can change the detuning by varying the axial magnetic
field;  by increasing the magnetic field,  the  ripple
period

3133



-4 104

-3 104

-2 104

-1 104

0

1 104

2 104

3 104

4 104

-1000 -500 0 500 1000

N
or

m
al

iz
ed

 a
dm

itt
an

ce

jG (m-1)

Figure 2.  Normalized electronic admittance (solid line)
and normalized circuit admittance (dashed line) as a
function of  jG .

decreases, and the ripple wavenumber kr  increases,

making the detuning more negative and shifting the
circuit admittance curve more to the left.   As the
magnetic field is increased, the average axial velocity

also drops, making both be  and $bq  larger, and moving

the slow space-charge wave gap in the electronic
admittance also to the left.  For large ripple amplitudes,
the movement in the electronic admittance is larger than
the movement in the circuit admittance, and for
sufficiently large amplitudes, the slow space-charge wave
gap is always further to the left than the lowest zero-
crossing of the circuit admittance, and there is no
resonance.  Because the amount of space-charge
determines the separation between the slow and fast
space-charge wave gaps, this effect increases as the beam
current is increased.

There is a peculiar regime in between these
extremes where the movements are matched, and there is
resonance for a very large range of axial magnetic fields
and resulting ripple periods, and where a beam will stay
in resonance as it loses energy to the rf field.

 In Fig. 3, we plot the gain per meter of interaction
length as a function of the applied axial magnetic field,
for a 10% ripple amplitude.  There are two regions of
gain - one with a field ranging from 0.38-0.42 T, and  a
second, more narrow region at a field of about 1.05 T.
Resonance is established in the first region with a fairly
high bz , where the axial field effectively only modifies

the ripple period.  Resonance is established in the second
region with a relatively low bz  (< 0.5), where the

increasing axial field mostly increases the space-charge

wavenumber $bq
2 .

At 22 kA (Fig. 4), the zero-crossing of the electronic
admittance and the gap in the electronic admittance due
to the slow space-charge wave are cotangent at a
magnetic field of about 0.7 T.  This is the condition of

auto-stable resonance, and the first derivative of the phase
and of the amplitude of the gain with respect to energy
vanish here.
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Figure 3.  Gain of nominal case as a function of axial
magnetic field, 10% beam ripple.
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Figure 4.  Gain curve for 22 kA (auto-stable resonance
condition is at about 0.7 T) .
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