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Abstract

In a 50 Hz rapid cycling power supply, the resonant ac
current of the synchrotron magnet is modulated by the
subharmonics of the source voltage rectified in 12 pulses
with SCR. The modulation is found to be caused by the
fluctuation of the pulsed power that is transferred to the
magnet circuit via a choke transformer due to the cycle-to-
cycle unequal charging of the capacitor located just after
the rectifier. This phenomena is observed when there is a
mismatch between frequencies of the power line and
resonant magnet circuit. In this paper, the modulation
behavior is analyzed and the experimental results are given
as well as those of the circuit computations.

1 INTRODUCTION

In fast-cycling synchrotrons, a pulsed power supply is
commonly used as power source for resonant network as
shown in Fig.1.

Figure 1: Pulsed power supply and resonant network for a
fast cycling synchrotron.

Generally, the resonant magnet current is not easily
affected by the source voltage disturbances owing to the
large stored energy in the resonant network, but it is never
immune from the disturbances. In a 50Hz rapid cycling
power supply system [1, 2], modulation of the resonant
current was observed and found to be caused by the
harmonics, especially the subharmonics of the source
voltage generated by a 12-pulse SCR rectifier. In this
paper, the investigation on the effect of the source voltage
on the resonant output is performed by both computation
and experiment. To the best of our knowledge, the
existing analyses [3, 4] were all carried out on an
assumption of harmonics-free source voltage. This
suggests a new approach that has to be developed to
investigate the system response to source voltage
harmonics. The approach described in this paper is based
on the general method on the analysis of linear circuits
containing periodically operated switches. The properties
predicted by the computation are well justified by the
experimental observations.  

2 EFFECT OF SUBHARMONICS ON RESONANT
CURRENT

The pulsed supply and its resonant network fit into the
category of linear time-varying networks. Because of the
periodical switching operation, the circuit reduces to the
special class of linear, periodically time-varying networks.
The response y(t) of a linear time varying system to an
input x(t) with Fourier transform X(ω) is defined by

y(t)
1

2
H( ,t)X( )e j td= −∞

∞∫π
ω ω ω ω

where H(ω, t) is the transfer function of the system [5].
For linear periodically time varying networks of period T,
the system function is periodic with respect to the period
T: H(ω, t+T)=H(ω, t). Therefore, it may be expanded in a
Fourier series,

H( ,t) Hn ( )e j(2 nt/T)ω ω π=
−∞

∞
∑ .

H0 may be regarded as an averaged time varying system
function. Evidently the remaining Fourier coefficients
represent system responses at sidebands around
nωs=n(2π/T). The analyses on periodically switched linear
networks can be found in [6-9]. This paper follows Liou's
approach [7]. We first present the system response to an
sinusoidal or exponential input in time domain and
describe the properties of the response. Then an analysis
in frequency domain shows the sidebands containing in the
pulse current Ip and resonant current Im.

2.1 Time domain

2.1.1 Approach

Generally the circuit can be described by the following
differential equations with respect to the periods of
switching-off and switching-on as follows,

Ẋn,k (t) AkXn,k (t) Bku(t)= +  (1.a)

yn,k (t) CkXn,k (t) Dku(t)= +  (1.b)

where Xn,k is a state vector, u an input vector, yn,k an
output vector, n the n-th operation and k=1, 2 means the
state of switching off and on, respectively. Fig.2
illustrates the notations for the n-th switching period.

Figure 2: Notations for n-th switching period.

At the switching instants tn,2 and tn,3, the boundary
conditions can be described by the state transient matrices
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F2 and F3 as follows.
Xn,2 (tn,2 ) F2Xn,1(tn,2 ) G2u(tn,2 )= + (2.a)

Xn 1,1(tn,3) F3Xn,2 (tn,3) G3u(tn,3)+ = + (2.b)

Assuming u(t)=vept, where v is a constant and p is a
complex number, the solution is given by

Xn,k (t) exp[Ak (t tn,k )]

[Xn,k (tn,k ) k (tn,k )] k (t)

= −

⋅ + −α α
(3.a)

αk (t) (Ak pI) 1eptBkv= − −     (3.b)

The solution (3), together with (2) can be computed
successively from a given initial vector to get the
response, but a useful result about the boundary
conditions is obtained as follows by manipulating further.

Xn,1(nT) Mn[X0,1(0) Jv] JepnTv= − +  (4)

where J [epTI M] 1H= − − , M F3eA2 2 F2eA1 1= τ τ (5)

and

H F3e
A2 2 F2(A1 pI) 1(e

A1 1 e
p 1I)B1

F3(A2 pI) 1(eA2 2 ep 1 epTI)B2

F3e
A2 2 G2e

p 1 G3e
pT

= − − −

+ − − −

+ +

τ τ τ

τ τ

τ τ

(6)

It is noticed from (4) that Xn,1(nT) consists of two terms.
The first term represents the transient mode while the

second is the steady-state mode. For n→∞ , Mn 0→  and
we get the steady-state result,

Xn,1(nT)ss JepnTv= .    (7)

From the repetitive computations of equations (2)-(7), the
response in time domain is obtained.

2.1.2 Numerical results

2.1.2.1 System parameters

Considering  the circuit of Fig.1, we have:

Xn,1 [if vf iL vm ]T=  and

Xn,2 [if vf ip iL vm ]T= ,

where iL=ich+im. In charging period (k=1),

A1

Rf /Lf 1/Lf 0 0

1/Cf 0 0 0

0 0 0 1/L

0 0 1/Cm 1/(CmRe)

=

− −

− −

















B1 1/Lf 0 0 0 T=[ ] , and ip=0.

In pulse period (k=2),

A2

Rf /Lf 1/Lf 0 0 0

1/Cf 0 1/Cf 0 0

0 1/Lp Rp/Lp 0 1/(kLp )

0 0 0 0 1/L

0 0 1/(kCm ) 1/Cm 1/(CmRe )

=

− −
−

− −

− −





















B2 1/Lf 0 0 0 0
T= [ ] ,

F2

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1

=





















, F3

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

=
















, G2 0=  and

G3 0= , where Lf=0.268H, Cf=0.6mF, Lp=1.86mH,

Lch=10.4mH, Lm=4.7mH, L=LchLm/(Lch+Lm), Rf=5mΩ,
Rp=1mΩ, k=2, Cm=3.2mF, and Re~70. Re is a pseudo-
resistance representing the ac loss. Accordingly, the
resonant frequency (i.e. switching frequency) is fs~50Hz,
τ1=5τ2 and τ1+τ2=T  (=switching period). Resonant
network quality factor is: Q=ωsCmRe~70. The resonant
condenser Cm is adjustable in both calculation and
experiment for our purposes.

2.1.2.2 System response to source voltage harmonics

The source voltage is provided by a 12-pulse SCR
rectifier, of which output contains both characteristic and
non-characteristic harmonics that arise from “unideal”
converter operation. The non-characteristic harmonics
called subharmonics are the components with lower
frequencies than the converter's fundamental frequency.
Assuming the power line frequency f0, the subharmonics
are of frequencies hf0, where h is an integer. For the model
system under discussion, f0=50Hz and h<12. The
calculation shows that the subharmonics appear as a
modulation with frequency fm=h∆f in resonant output as
shown in Fig.3, where ∆f=|fs-f0| and fs is the switching
frequency.

Figure 3: Modulations by subharmonics. Scaled responses
(left) to unit amplitude with nf0 (n=1,2,3 and 4 from top
to bottom) in resonant current Im for fs=49.85Hz are added
to the unperturbed Im in the exaggerated ways (right).

Modulation frequencies can be determined by investigating
the variation mode in the boundary condition. For an

input subharmonic vs e
jh2 f0t= π

 according to (7), the

state vector is given at each beginning instant of
switching period for steady-state operation as:

Xn,1(nT) Je
jh2n f0/fs= π

.

It is seen that Xn,1(nT) varies at a quasi-periodic mode with
frequency fm=h∆f, accordingly the system outputs will
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also vary with the same way. fm is not a rigid frequency
but always holds a value close to h∆f.

2.2  Frequency domain

Frequency domain formulations are obtained by
performing the Laplace  transform of the state vector
given by (3) then deriving the Laplace transformation for
output y(t).  Finally the following results are obtained,

Y(s) Y( ) T( )
1

j[ ( 0 n s )]
vp j

s j
0=

=
= =

− +
ω
ω

ω ω
ω ω ω

,

T( 0 n s ) {Cke j( 0 n s ) k 1Rk ( 0 n s )
k 1

2

e jn s k 1 (1 e jn s k )

jn s
[Ck (Ak j 0I) 1Bk Dk ]}/T

ω ω ω ω ω ω

ω ω

ω
ω

+ = − + − + −
=
∑

− − − −
− − −

η

η τ

for n≠0, and

T( 0 ) {Cke j 0 k 1Rk ( 0 )
k 1

2

k[Ck (Ak j 0I) 1Bk Dk ]}/T

ω ω ω

ω

= − −
=
∑

− − − −

η

τ

for n=0, where η0=0 and η1=τ1. Rk is complex matrix
comprising the circuit configuration matrices and
switching transformation matrices in (1) and (2),
respectively. It is concluded that for a subharmonics hf0,
the output contains sidebands: nfs±h∆f plus lower-
frequency h∆f, where n=1,2,3,... Fig.4 is a typical
calculation result showing the spectra of Ip.

Figure 4:   Calculated spectra of Ip, fs=49.85Hz.

3 EXPERIMENTS

The modulation in resonant current was measured and the
relation to the subharmonics of 100Hz was obtained as in
Fig.5. In the model pulsed power supply, the prominent
subharmonic frequency is 100Hz due to the configuration

Figure 5: Modulation by 100Hz subharmonics

of the firing circuit for the 12-pulse rectifier, while 50Hz
is very low and almost unchanged. The measured spectra
of Ip and Im in Fig.6 support the analyses  made  above.
Sidebands of Ip appear at both sides of nfs (n=1,2,...),
while those of Im at both sides of only fs. This is because
the latter sidebands at higher frequency is suppressed by
the decreased amplitude response of the transfer function of
Im/Ip.

Figure 6: Measured spectra of Ip and Im.

4 CONCLUSIONS

Analytical model based on the Liou’s approach is used to
adapt for the periodically operated SCR switch in the
linear time-varying circuit whose frequency is different
from the line frequency. This approach explains the
experimental observations on the amplitude modulated ac
current of the fast cycling synchrotron magnet quite well.
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