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1 INTRODUCTION

Unavoidable field-shape imperfections are present in the
superconducting magnets of modern hadron colliders, due
to mechanical tolerances, persistent currents, design imper-
fections, coil deformations and iron saturation. The resid-
ual multipolar errors, typically of the order of a few units
in 10−4 at the usual reference radius of1 cm, have a detri-
mental effect on the stability of the particle orbits. A sound
design of the machine layout, with well focused orbit func-
tions and a suited set of multipolar correctors, may help in
improving the beam stability. However, the dynamic aper-
ture (hereafter DA), may strongly depend on the random
part of the multipolar imperfections and on the specific dis-
tribution of the errors along the machine azimuth. In such
a case, sorting strategies can be applied to provide the mu-
tual compensation of the residual errors. This procedure is
quite demanding, therefore it is crucial to evaluate in detail
the expected beneficial effects on beam dynamics. In fact,
all the magnets have to be carefully measured as they are
manufactured and qualified in terms of the random imper-
fections. In addition, a sizeable number of magnets must
be available for sorting before the final installation.

Two techniques are proposed for sorting the LHC
dipoles. The first one uses the perturbative analysis of
the nonlinear betatron motion to find dynamical quantities
which allow to evaluate rapidly the DA. These quantities
are called Quality Factors (hereafter QF) [1, 2]: the search
of a satisfactory rearrangement is performed by generating
random permutations of the magnetic elements, selecting
the permutation which optimises the QF and hence the DA.
The effectiveness of this method depends on the degree of
correlation of the QF with the numerical estimate of the dy-
namic aperture. The second approach is based on the local
cancellation of the random errors by pairing the magnets
with similar errors in magnitude and sign and placing the
pairs in strategic positions along the azimuth of the accel-
erator. We refer to these methods as deterministic algo-
rithms [3, 4].

In Section 2 we present in detail the sorting strategies.
In Section 3 we apply them to a realistic LHC model. Con-
clusions are drawn in Section 4.

2 SORTING STRATEGIES

2.1 Analytical indicators of the dynamic aperture

A good arrangement of the magnets along the azimuth of
the accelerator can be found by comparing a sufficiently
large number of random permutations [5]. Each permu-
tation produces a different lattice with a different DA and

the search is stopped when a satisfactory value of the DA
is found. The direct calculation of the DA is extremely
time consuming and allows to explore only a very limited
number of permutations. It is therefore necessary to find
dynamical quantities which can be computed much faster
while being well correlated with the DA, in order to ex-
plore more configurations. The perturbative theory of the
betatron motion provides a powerful tool to parametrise the
effects of non linearities on beam dynamics and to build
analytical indicators of the DA. The QF considered in this
paper are either the tuneshift or the strength of a certain
resonance.

The first step of the sorting procedure is the analysis of
the correlation of various QF with the DA. A QF is retained
if it allows to better disentangle the good realizations (i.e.
the ones with a large DA) from the bad ones. The second
step consists in generating a set of random permutations of
the errors and for each permutation to compute only the QF.
The permutation which gives the minimum value of the QF
is selected. The third and last step of this technique con-
sists in the verification of the effectiveness of the sorting
strategy. The analysis of the correlation of the QF’s with
the DA is made typically considering only the 4D beta-
tronic motion, and the short-term DA. We therefore have to
check, a posteriori, that the sorted sequence is more stable
for long-term tracking, including synchrotron motion and
various tune ripple sources. It is also interesting to verify
whether the improvement is robust with respect to signifi-
cant changes of the working point of the machine. This last
step will be treated in a separate paper in preparation.

The DA is calculated by tracking particles for103 turns,
with different initial conditions on a polar grid in the plane
(x, y) assuming zero initial momenta. The coordinates
of the last stable particle on each radius are retained and
the value of the DA is given by the average of the radius
over the different angles. The QF’s used are defined in
Ref. [2] and they were calculated with the FORTRAN code
PLATO [6].

2.2 Deterministic algorithms

Local compensation schemes allow to define determinis-
tic algorithms to rearrange the magnetic elements along the
azimuth of the accelerator. They are based on the pairing of
magnets with similar random errors which mutually com-
pensate by an appropriate location in the lattice.

Pairing at zero phase advance.Taking into account that
two adjacent dipoles have close values of the optical func-
tions and almost the same betatron phase, one can obtain
a local compensation scheme by placing in adjacent posi-
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tions two errors equal in strength but with opposite signs.
In the LHC cell the average phase advance between two
dipoles is approximately15 degrees and the optical func-
tions vary by less than50%. This method will be denoted
by Sort-1 in what follows.

Pairing at180 or 360 degrees.Two equal and opposite
errors are quite well compensated at360 degrees, while
equal errors with the same sign cancel at180 degrees, as-
suming that the motion is quasi-linear between the two lo-
cations. In the LHC, each cell contains6 dipoles and the
phase advance is about90 degrees. Positions separated
by 24 (12) magnets correspond to a phase advance of360
(180) degrees. In these positions the optical functions are
the same. Therefore one can easily obtain quasi-local com-
pensation of the errors. This method will be denoted as
Sort-2.

2.3 Mixed techniques

It is possible to define sorting procedures based on more
than one of the previous strategies. The pairing of two ad-
jacent magnets can be improved by a compensation at360
degrees. In this case4 dipoles are paired. This method will
be denoted as Sort-3. Furthermore, the techniques based
on the QF’s can be used in combination with deterministic
algorithms. In this case the compensated pairs of magnets
are considered as a new unit and the permutations are gen-
erated not on the single magnets but on the pairs. In fact
we found very effective to combine the QF’s analysis on
permutations of blocks of4 dipoles previously paired with
the Sort-3 method. This method will be denoted as Sort-3-
QF , whereQF is the dynamical quantity which has been
minimised.

3 THE LHC MODEL

The LHC model used in our simulation is the old LHC ver-
sion 2, with the injection optics. It is made of8 octants,
each of them carrying16 dipoles in the dispersion suppres-
sor region and144 dipoles in the arcs. Each arc is com-
posed of24 FODO cells each carrying6 dipoles. The over-
all number of dipoles is1280. The set of376 chromatic
sextupoles is considered in the simulations. The distribu-
tion of the random errors is assumed to be Gaussian trun-
cated at3 σ and theσ of the multipolar coefficients used
in the simulation are given in Table 1. We assume that the
magnets will be installed as the production goes on. Only
a limited number of dipoles will be stored and available
for sorting. We applied the sorting strategies on groups of
144 dipoles. Two extreme cases were analysed in detail:
dipoles with only randomb3, and dipoles with the full set
of random errors given in Table 1.

3.1 Randomb3

We applied the deterministic algorithms to a set of100 re-
alizations of the random errors. Furthermore we analysed
the correlation of the QF’s related to the tuneshifts and the
strength of several resonances. Several of those were found

Table 1: Random errors in the LHC dipoles at injection, in
unit 10−4 referred to a radius of1 cm.

Order Normal Skew
1 - -
2 0.372 1.227
3 0.882 0.186
4 0.055 0.186
5 0.083 0.041
6 0.014 0.022
7 0.012 0.011
8 0.005 0.005
9 0.003 0.004

10 0.002 0.002
11 0.001 0.001

to be well correlated as shown in Fig. 1(a) and (b). The
correlations can vary when the dipoles are paired, i.e. with
the scheme Sort-3 as shown in Fig. 1 (c) and (d). Some

Figure 1: Correlation of DA and QF for100 random real-
izations ofb3: (a) norm of (1,2), (b) norm of (2,-2). After
the pairing of the dipoles according to the scheme Sort-3,
the same correlation plots are shown in (c) and (d) respec-
tively.

QF’s lose their correlation with the dynamic aperture after
the pairing of the dipoles while others are still well corre-
lated. This implies that the process of pairing acts only on
particular resonant terms as, for instance, the strength of
the resonance(2,−2). The QF’s which are still correlated
can be used to improve the DA: the norm of the resonance
(1, 2) has been used to sort a set of100 random realizations
of the errors. The characteristics of the distribution of the
DA and the results of the sorting strategies are reported in
Table 2. The average value over100 realizations is denoted
by < ρ > and the R.M.S. byσρ. The improvement of the
DA due to the sorting of the cases with an initially small
value of the DA are denoted as ‘Worst Cases’ in Table 2.
The effect of sorting on the DA can be put in evidence by
plotting the relative gain in DA as a function of the DA of
the unsorted realizations of the errors, as shown in Fig. 3.
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Table 2: Characteristics of the DA distribution over100
random realizations ofb3, with different sorting proce-
dures.

< ρ > σρ Gain Worst Cases
unsorted 2.57 0.44 -
sort-1 3.24 0.39 26% 74%
sort-2 3.02 0.37 18% 53%
sort-3 3.45 0.38 35% 82%
sort-3-Q(1, 2) 3.78 0.42 48% 91%

Figure 2: DA distribution over 100 random realizations of
b3 paired and sorted withQ(1, 2); the DA is given in nor-
malized mm atβx = 1 m.
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Figure 3: Relative gain as a function of the DA of the un-
sorted sequence of random errors for100 realizations. Ran-
domb3.

3.2 All random errors

We applied the deterministic algorithm described in
Sec. 2.2 to the case where all the random errors up to the
11-th order are considered in the dipoles. The correlation
of the QF’s was also investigated generating permutation
of the block of magnets previously paired. Owing to the
presence of multipoles of order as high as11, the one turn
map has to be calculated at the same order. Resonances up
to 10-th order were investigated and the norm of the res-
onance(7,−1) was chosen to select the best permutation

Table 3: Characteristics of the DA distribution over100
random realizations of all the random errors, with different
sorting procedures.

< ρ > σρ Gain Worst Cases
unsorted 1.57 0.09 - -
sort-1 1.63 0.07 4% 13%
sort-2 1.64 0.05 4% 15%
sort-3 1.65 0.07 5% 15%
sort-3-Q(7,−1) 1.68 0.05 7% 17%

of the blocks obtained from the Sort-3 method. The effects
on the DA were investigated on a set of100 random real-
izations of the errors and the results are reported in Table 3
and in Fig. 4. The improvement of the dynamic aperture is
still non negligible especially for the worst cases.
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Figure 4: Relative gain as a function of the DA of the un-
sorted sequence of random errors for100 realizations. All
random errors.

4 CONCLUSIONS

We presented several sorting strategies and their applica-
tion to a simplified LHC model with only random errors.
The effect of sorting on the dynamic aperture is particu-
larly significant for the worst realizations of the random
errors, and improvements larger than25% were found for
the most complicated cases where all multipolar errors up
to order11 are included in the dipoles. The analysis of the
robustness of these improvements is in progress in more
recent LHC lattice models.
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