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Motivation

• Beam cooling essential for maximizing luminosity in colliders

• Raise peak luminosity by lowering !"

• Integrated luminosity by damping emittance growth

• Need to cool beams of high energy and high brightness

• Stochastic cooling

– Cooling of antiprotons, ions

– Cooling time limited by bandwidth of feed-forward system

– Seek to divide bunches into smaller samples more readily cooled

• Optical stochastic cooling

– Feed-forward system based on optical photons

– Large increase in bandwidth (>104) should yield corresponding

decrease in cooling time

– Promising for high energy hadrons, ions, muons
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Transit Time OSC

• Analogous to stochastic cooling with undulators as pick-up and kicker

• Works to lower momentum spread, transverse cooling through dispersion

#

M. Zolotorev & A. Zholents, Phys. Rev. E 50, 3087 (1994)

• Momentum kick based on phase shift due to transit time difference

• Bypass optics for central orbit to sit on zero crossing of field in U2
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OSC Demo With Electrons

¥ OSC considered for p, ions at several facilities, still unproven

¥ Counteracts heating due to IBS, beam-beam (cooling of tails)

¥ OSC rates, luminosity gain strongly depend on achievable parameters

¥  Technical requirements for cooling of heavy particles are severe ($$$)

¥ Optics of particles in bypass controlled to fraction of #

¥ Very strong wiggler fields

¥ Amplifier saturates far below optimal gain

¥ Diagnostics predictive of OSC required (cooling time of order hours)

¥Demonstration of OSC with e- would point way to cooling at very high E, N

¥  OSC of electrons much faster (~1 sec)

¥  Modest technical requirements (wiggler, amplifier, chicane)

¥ Develop techniques to achieve OSC, study physics for scaling to high E, N

¥  Proposed at several facilities but not carried out
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MIT-Bates Accelerator Complex

¥ MIT-Bates accelerator ideally suited for dedicated OSC study

¥ Accelerate electrons with versatile bunch structure with S-band Linac

¥ Beam injected into South Hall Ring for long-lived storage

¥Status

¥Operated as DOE nuclear physics user facility through 2005

¥ Transition completed to MIT-owned facility with accelerator intact

¥Viability of complete accelerator verified (OSC beam study, April 2007)
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¥ Distinguish OSC from damping

due to synchrotron radiation

¥ Low energy electrons

¥ Large dipole bend radius

¥Established stored beam at

325 MeV during 2007 run

¥ South Hall Ring geometry

¥ 2 Long straight sections

¥OSC in east straight

¥Access area in northern arc

¥ Goal: 1st OSC demonstration

¥Design tolerances consistent

with existing technology

¥Existing diagnostics, RF system
accommodate OSC experiment

MIT-Bates South Hall Ring

C = 190.2 m

$ = 9.14 m

OSC

apparatus
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OSC Beam Parameters

¥ Choose lowest viable energy for OSC demonstration experiment

¥ OSC Lattice with large emittance for enhanced cooling

¥ Modeling of IBS and Touschek lifetime (F. Wang, FRPM088)

¥ Produces high dispersion (% =6 m) in straight for transverse OSC

¥ fb to match amplifier rate (mode-locked photoinjector laser sets timing)

4.83 s&xSR transverse damping time (sec.)

18.9 MHzfbSHR bunch frequency

0.3 mAISHR average current

!p

'x

Nb

E

Symbol

98( nm radSHR horizontal emittance

1.67 * 10-4SHR relative momentum spread

1.0 * 108Particles/bunch

Design ValueParameter

300 MeVBeam Energy
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Experiment Approach

•Allow beam to reach equilibrium condition after injection

• Equilibrium when IBS growth rate matches synchrotron damping

• Other effects at lower level (residual gas, quantum excitation)

• Optically cool beam from its initial equilibrium

• Expect strong OSC effects on transverse beam size

• Study as function of bunch intensity, amplifier parameters

Equilibrium emittance for

SHR at 300 MeV, OSC

lattice
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¥ Broadband optical parametric amplifier (PPLN) in low conversion limit

¥ Large dispersion-free amplification with great signal to noise

¥ Very short medium required, total delay ~20 ps

¥ Allows small angle (65 mrad) OSC bypass with 6 mm path length change

¥ Fixed optics with achievable magnet tolerances

¥ Minimize additional synchrotron radiation and changes to SHR RF

¥ 2 planar undulators tuned to amp wavelength (2 µm), bandwidth (~10%)

OSC Apparatus Overview

B1 B2 Q1 Q2 B3 B4
Optical

Amplifier

5.5 m 2 m

Compact apparatus readily integrated into SHR East Straight
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20 ps, 1030µm Laser

20 MHz, 5W,0.25µJ

2mm

n=2

Undulator

Radiation

Beam radius:

500
in

w um=

3.5
col

w mm=

20
crystal

w mµ=

BaF2 wedges, n=1.5, 1mm

0.2pJ

4!W

1.6nJ

32mW

Undulator Radiation

F. Kärtner, A. Siddiqui

• Amplifier, optics internal to SHR vacuum system, remotely actuated

• Pump laser sets gain, optimize as beam cools

• Fine phase control allows interferometry in U2 for achieving OSC

•Synchronize amplified radiation and e- beam at U2 to fraction of #

•Best at low gain, explore use in feedback as A2 >> A1
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¥Absolute tolerances for achieving OSC modest with small chicane

¥Stability requirements, variation for central orbit length ! 0.1 µm (20° phase)

¥ Current stability for power supplies {10-5}

¥ Position stability of devices {50 µm}

OSC Chicane
¥ Chicane optics control path length difference between electrons and light

¥ Straightforward linear optics for small symmetric chicane

¥ COSY simulation shows small effects from nonlinear terms
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Summary
• Optical Stochastic Cooling is a technique with a large role to play in rapid of

cooling beams with high energy and high brightness

– Significant cost and time savings in designing OSC into machine

– Initial demonstration of OSC with low energy electrons is essential to

probe the physics and address key technical questions

– Rated “Compelling” by RHIC Accelerator Physics Review Panel (2007)

• Realization plan for OSC demonstration with electrons over 3 years

– Complete beam studies for OSC Lattice

– Install and commission OSC chicane, wigglers

– Integration of amplifier into SHR

• Experimental program to study OSC of damped electron beam

– Measure OSC as function of bunch intensity, lattice parameters

– Investigate diagnostics for OSC achievement and optimization

– Many extensions (energy, tunable chicane) possible

• Experiment is ready to proceed, awaiting full funding




