LHC Upgrade Scenarios

Frank Zimmermann

PAC 2007 Albuquerque

thanks to many colleagues from CERN and around the world, in particular to Walter Scandale and Jean-Pierre Koutchouk

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395)

Large Hadron Collider (LHC)

LHC baseline luminosity was pushed in competition with SSC

outline

performance challenges players & schedule two scenarios

- beam parameters; features; IR layouts
- merits and challenges;

Iuminosity evolution
 Iuminosity leveling
 bunch-structure
 injector upgrade
 energy upgrade
 conclusions

three LHC challenges

collimation & machine protection

- quenches, cleaning efficiency, impedance

- \rightarrow LHC machine protection system: TUZAC03, R. Schmidt et al
- \rightarrow performance reach of LHC phase-1 collimation system: TUPAN100, G. Robert-Demolaize et al
- → transverse collimator impedance: WEOAC03, E. Metral et al
- \rightarrow LHC impedance reduction by nonlinear collimation TUPAN085, J. Resta Lopez et al

electron cloud

- heat load, instabilities, emittance growth

- → improved e-cloud simulations: THPAN066, W. Bruns et al
- → incoherent e-cloud: THPAN075, F. Zimmermann et al
- \rightarrow e-cloud in wigglers: TUPAS067, L. Wang et al

beam-beam interaction

- head-on, long-range, weak-strong, strong-strong
 - → LHC beam-beam compensation: TUPAN091, U. Dorda et al
 - \rightarrow DC wire experiments in RHIC: TUPAS095, W. Fischer et al

electron cloud in the LHC

schematic of e- cloud build up in the arc beam pipe, due to photoemission and secondary emission

[F. Ruggiero]

long-range beam-beam PACMAN bunch PACMAN bunch head-on collision long-range collisions long-range collisions 30 long-range collisions per IP, 120 in total

crossing angle $R_{\phi} = \frac{1}{\sqrt{1+\phi^2}}; \quad \phi \equiv \frac{\theta_c \sigma_z}{2\sigma_x}$ "Piwinski angle"

Frank Zimmerma

upgrade players

LARP

CERN Council Strategy Group

2001 upgrade feasibility study

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics

Large Hadron Collider Project

LHC Project Report 626

LHC Luminosity and Energy Upgrade: A Feasibility Study

O. Brüning[§], R. Cappi[‡], R. Garoby[‡], O. Gröbner[†], W. Herr[§], T. Linnecar[§], R. Ostojic[†],
K. Potter^{*}, L. Rossi[†], F. Ruggiero[§] (editor), K. Schindl[‡], G. Stevenson[¶], L. Tavian[†],
T. Taylor[†], E. Tsesmelis^{*}, E. Weisse[§], and F. Zimmermann[§]

CARE-HHH workshops ex. CARE-HHH APD workshop 'LUMI 06' (70 participants) *Towards a Roadmap for the Upgrade of the LHC and GSI Accelerator Complex* IFIC, Valencia (Spain), 16-20 October 2006 strong synergy with US-LARP mini collaboration meeting 25-27 Oct. 2006

IR scheme, beam parameters, injector upgrade

parameter	symbol	nominal	ultimate	12.5 ns	s, short
transverse emittance	ε [μm]	3.75	3.75		3.75
protons per bunch	N _b [10 ¹¹]	1.15	1.7		1.
bunch spacing	Δt [ns]	25	25		125
beam current	I [A]	0.58	0.86		1.2
longitudinal profile		Gauss	Gauss		Gauss
rms bunch length	σ_{z} [cm]	7.55	7.55		1.78
beta* at IP1&5	β* [m]	0.55	0.5		0.25
full crossing angle	θ_{c} [µrad]	285	315		445
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75		0.75
peak luminosity	$L [10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	1	2.3		9.2
peak events per crossing		19	44		88
initial lumi lifetime	τ _L [h]	22	14		7.2
effective luminosity (T _{turnaround} =10 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91		2.7
	T _{run,opt} [h]	21.2	17.0		12.0
effective luminosity (T _{turnaround} =5 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.56	1.15		3.6
	T _{run,opt} [h]	15.0	12.0		8.5
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	3.3	4 (7.5)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25		0.5
image current heat	P _{IC} [W/m]	0.15	0.33	X	1.87
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.04 (0.38)	0.06 (0.56)	0.113 (1.13	
extent luminous region	σ_{l} [cm]	4.5	4.3	2.1	
comment				partial wire c.	

baseline upgrade parameters 2001-2005

abandoned at LUMI'06

(SR and image current heat load well known)

Frank Zimmermann, PAC07, TUZAKI02 total heat far exceeds max. local cooling capacity of 2.4 W/m

parameter	symbol	Early Separation	Large Piwinski Angle
transverse emittance	ε [μm]	3.75	3.75
protons per bunch	N _b [10 ¹¹]	1.7	A.9
bunch spacing	$\Delta t [ns]$	25	Q 50
beam current	I [A]	0.86	1.22
longitudinal profile		Gauss	y Flat
rms bunch length	σ_{z} [cm]		11.8 🕅
beta* at IP1&5	β* [m]	0.08	6 0.25
full crossing angle	θ_{c} [µrad]	0	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0	2.0
hourglass reduction		N 0.86	6 ³⁵ 0.99
peak luminosity	$L [10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	15.5	9 10.7
peak events per crossing		294	403
initial lumi lifetime	τ _L [h]	2.2	4.5
effective luminosity	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	2.4	2.5
(T _{turnaround} =10 h)	T _{run,opt} [h]	6.6	9.5
effective luminosity	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	3.6	3.5
(T _{turnaround} =5 h)	T _{run,opt} [h]	4.6	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.04 (0.59)	0.36 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.25	0.36
image current heat	P _{IC} [W/m]	0.33	0.78
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.06 (0.56)	0.09 (0.9)
extent luminous region	σ_{l} [cm]	3.7	5.3
comment		D0 + crab (+ Q0)	wire comp.

two new upgrade scenarios

compromises between heat load and # pile up events

for operation at beam-beam limit with alternating planes of crossing at two IPs LPA ES $L = \frac{f_{rev}\gamma}{2r}$ profile ↑ LPA L ES ↓ LPA

where (ΔQ_{bb}) = total beam-beam tune shift; <u>peak luminosity</u> with respect to ultimate LHC:

ES: $x \ 6 \ x \ 1.3$ $x \ 0.86 = 6.7$ LPA: $\frac{1}{2} \ x^2 \ x^2.9 \ x^{1.3}$ $x \ 1.4 \ = 5.3$ what matters is the integrated luminosity

early separation scenario

- stay with ultimate LHC beam (1.7x10¹¹ protons/bunch, 25 spacing)
- squeeze β* to ~10 cm in ATLAS & CMS
- add early-separation dipoles in detectors starting at ~ 3 m from IP
- possibly also add quadrupole-doublet inside detector at ~13 m from IP
- and add crab cavities (\$\overline{\mathcal{\mathcal{P}_{Piwinski}}}\$\scrime\$> 0\$), and/or shorten bunches with massive addt'l rf

→ new hardware inside ATLAS & CMS detectors, first hadron-beam crab cavities (J.-P. Koutchouk et al)

CMS & ATLAS IR layout for ES option

→ ES scheme: THPAN072,
E. Todesco, J.-P. Koutchouk et al

ES scenario assessment

merits: negligible long-range collisions, no geometric luminosity loss, no increase in beam current beyond ultimate, could be adapted to crab waist collisions (LNF/FP7) challenges: D0 dipole deep inside detector (~3 m from IP), optional Q0 doublet inside detector (~13 m from IP), strong large-aperture quadrupoles (Nb₃Sn) crab cavity for hadron beams (emittance growth), or shorter bunches (requires much more RF) 4 parasitic collisions at $4-5\sigma$ separation, off-momentum β beating 50% at δ =3x10⁻⁴ compromising collimation efficiency, low beam and luminosity lifetime $\sim \beta^*$

Are there slots for a "D0" dipole in ATLAS?
We cannot put the D0 in the inner detector
BUT there are potential slots starting at 3.5 m and 6.8 m (ATLAS)

G. Sterbini, J.-P. Koutchouk, LUMI'06

Where would we put the D0 in ATLAS?

G. Sterbini, J.-P. Koutchouk, LUMI'06

The same strategy in CMS

G. Sterbini, J.-P. Koutchouk, LUMI'06

ES scheme needs crab cavities geometric loss factor → THPAN072

large Piwinski angle scenario

- double bunch spacing
- longer & more intense bunches with $\phi_{\text{Piwinski}} \sim 2$
- keep β*~25 cm (achieved by larger-aperture low-β quads alone; numerous optics solutions, e.g. LHC Project Report 1008 by O. Bruning, R. De Maria, & R. Ostojic)
- do not add any elements inside detectors
- long-range beam-beam wire compensation
 novel operating regime for hadron colliders

CMS & ATLAS IR layout for LPA option

long bunches & nonzero crossing angle & wire compensation

LPA scenario assessment

<u>merits:</u> no elements in detector, no crab cavities, lower chromaticity,

less demand on IR quadrupoles

(NbTi expected to be possible),

could be adapted to crab waist collisions (LNF/FP7)

challenges:

operation with large Piwinski parameter unproven for hadron beams (except for CERN ISR),

high bunch charge,

beam production and acceleration through SPS, larger beam current,

wire compensation (almost etablished), off-momentum β beating ~30% at δ =3x10⁻⁴

IR upgrade optics

"compact low-gradient" NbTi, β *=25 cm <75 T/m (Riccardo De Maria, Oliver Bruning) "modular low gradient" NbTi, β *=25 cm <90 T/m (Riccardo De Maria, Oliver Bruning) "low β_{max} low-gradient" NbTi, $\beta^*=25$ cm <125 T/m (Riccardo De Maria, Oliver Bruning) standard Nb₃Sn upgrade, $\beta^*=25$ cm \sim 200 T/m, 2 versions with different magnet parameters (Tanaji Sen et al, Emmanuel Laface, Walter Scandale) + crab-waist sextupole insertions? (LNF/FP7) early separation with $\beta^*=8$ cm, Nb₃Sn includes D0; triplet closer to IP or optional Q0; (Jean-Pierre Koutchouk et al)

Frank Zimmermann, LHC Upgrade Scenarios, PAC07, TUZAKI02

probably compatible with LPA upgrade path

crab waist scheme

Hamiltonian

$$H_I = -\frac{1}{4} p_y^2 \left(\frac{2x}{\theta_c}\right)$$

initiated and led by LNF in the frame of FP7; first beam tests at DAFNE later in 2007

minimizes β at $s = -x/\theta_c$

implementation: add sextupoles at right phase distance from IP

IP1& 5 event pile up for ES and LPA scenario

experiments prefer more constant luminosity, less pile up at the start of run, higher luminosity at end

how could we achieve this?

ES: dynamic β squeeze dynamic θ change (either IP angle bumps or varying crab voltage)

<u>LPA:</u>

dynamic β squeeze, and/or dynamic reduction in bunch length

β squeeze for ES

β squeeze for LPA

run time & average luminosity

	w/o leveling	with leveling
luminosity evolution	$L(t) = \frac{\hat{L}}{\left(1 + t / \tau_{eff}\right)^2}$	$L = L_0 \approx const$
beam current evolution	$N(t) = \frac{N_0}{\left(1 + t / \tau_{eff}\right)}$	$N = N_0 - \frac{N_0}{\tau_{lev}}t$
optimum run time	$T_{run} = \sqrt{\tau_{eff} T_{turn-around}}$	$T_{run} = \frac{\Delta N_{\max} \tau_{lev}}{N_0}$
average Iuminosity	$L_{ave} = \hat{L} \frac{\tau_{eff}}{\left(\tau_{eff}^{1/2} + T_{turn-around}^{1/2}\right)^2}$	$L_{ave} = \frac{L_0}{1 + \frac{L_0 \sigma_{tot} n_{IP}}{\Delta N_{max} n_b} T_{turn-around}}$

$$\tau_{eff} = \frac{N_0 n_b}{n_{IP} \hat{L} \sigma_{tot}}$$

$$\tau_{lev} = \frac{N_0 n_b}{n_{IP} L_0 \sigma_{tot}}$$

examples	ES, low β^* ,	LPA, long bunches,		
	with leveling	with leveling		
events/crossing	300	300		
run time	N/A	2.5 h		
av. luminosity	N/A	2.6x10 ³⁴ s ⁻¹ cm ⁻²		
events/crossing	150	150		
run time	2.5 h	14.8 h		
av. luminosity	2.6x10 ³⁴ s ⁻¹ cm ⁻²	2.9x10 ³⁴ s ⁻¹ cm ⁻²		
events/crossing	75	75		
run time	9.9 h	26.4 h		
av. luminosity	2.6x10 ³⁴ s ⁻¹ cm ⁻²	1.7x10 ³⁴ s ⁻¹ cm ⁻²		

Frank Zimmermann, LHC Upgrade Scenarios, PAC07, TUZAKI02

assuming 5 h turn-around time

IP1& 5 luminosity evolution for ES and LPA with leveling

IP1& 5 event pile up for ES and LPA with leveling

average luminosity & run time vs. final $\beta *$, I_b

for ES with β* squeeze

for LPA with β* squeeze

for LPA with *I*_b reduction

old upgrade bunch structure

new upgrade bunch structures

Evolution of the CERN Accelerator Complex - Combinations proposed by PAF

Proton flux / Beam power

M. Benedikt, R. Garoby

DG White Paper Injector Upgrade (Theme 2)

M. Benedikt, R. Garoby, CERN DG

injector upgrade

- needed for ultimate LHC beam
- reduced turn around time & higher integrated luminosity
- 4x10¹¹ protons spaced by 25 ns (now ~1.5 10¹¹)
- beam production:

for ES straightforward for LPA e.g. omitting last double splitting in PS (or PS2)

- 3 techniques for bunch flattening available
 - \rightarrow 160-MeV injection in to PSB: TUPAN093, F. Gerigk; TUPAN109, W. Weterings,
 - \rightarrow Linac 4 rf structures, FROBC02, F. Gerikg et al
 - \rightarrow PS2 optics considerations: TUODKI02, C. Carli et al
 - → PS2 Injection, Extraction and Beam Transfer: TUPAN094, T. Kramer et al
 - \rightarrow space-charge compensation in LHC injectors: THPAN074, M. Aiba et al

proposed design of 24-T block-coil dipole for "LHC energy tripler"

P. McIntyre et al, Texas A&M, PAC'05

Bi-2212 in inner (high field) windings, Nb₃Sn in outer (low field) windings

magnets are getting more efficient!

→Bi-2212 Coil Technology Development for an LHC Tripler Dipole: MOPAS034

summary - 1

- two scenarios of L~10³⁵ cm⁻²s⁻¹ for which heat load and #events/crossing are acceptable
- early separation: pushes β*; requires slim magnets inside detector, crab cavities, & Nb₃Sn quadrupoles and/or optional Q0 doublet; attractive if total beam current is limited; luminosity leveling via β* or θ_c (e.g. crab voltage)
- <u>large Piwinski angle:</u> fewer longer bunches of higher charge ; can probably be realized with NbTi IR technology if needed ; Q0 also an option here ; compatible with LHCb ; open issues are SPS & hadron beam-beam effects at large Piwinski angle; luminosity leveling via bunch length or via β*

• off-energy β beating common concern, worse at lower β^*

- first two or three years of LHC operation will clarify severity of electron cloud, long-range beam-beam collisions, impedance etc.
- first physics results will indicate whether or not magnetic elements can be installed inside the detectors
- these two experiences will decide the upgrade path
- until then keep both options open!

this talk is dedicated to the memory of Francesco Ruggiero (1957-2007)

who initiated and guided the LHC upgrade studies