RHIC plans towards higher luminosity

Alexei Fedotov

for Collider-Accelerator Department team, BNL

June 26, 2007

Alexei Fedotov, June 26 2007, PAC07

RHIC – a High Luminosity (Polarized) Hadron Collider

Gold Ion Collisions in RHIC

RHIC heavy ions collisions

a "Mini-Bang" Nuclear matter at extreme temperatures and density

Produce and explore a new state of matter

a. Formation phase -

parton scattering

b. Hot and dense phase -

→ strongly interacting hot dense material (sQGP, "perfect liquid")

c. Freeze-out –

emission of hadrons

Alexei Fedotov, June 26 2007, PAC07

Polarized Hadron collider

RHIC Spin Physics

- Spin structure functions of gluon and anti-quarks
- Parity violation in parton-parton scattering
- Requires high beam polarization and high luminosity

Alexei Fedotov, June 26 2007, PAC07

RHIC design and achieved parameters for 100 GeV/n (A_1 and A_2 are the number of nucleons in the ions of colliding beams)

species	No of bunches	Ions/ bunch [10 ⁹]	β* [m]	Polariz ation, average	L _{store,avg} [cm ⁻² s ⁻¹]	A ₁ A ₂ L _{store, avg} [cm ⁻² s ⁻¹]	A ₁ A ₂ L _{peak} [cm ⁻² s ⁻¹]			
Design Parameters (1999)										
Au-Au	56	1.0	2		2×10 ²⁶	8×10 ³⁰	31×10 ³⁰			
p-p	56	100	2		4×10 ³⁰	4×10 ³⁰	5×10 ³⁰			
Enhanced Design Parameters (by 2009)										
Au-Au	111	1.0	0.9		8×10 ²⁶	31×10 ³⁰	140×10 ³⁰			
p↑-p↑	111	200	0.9	70%	60×10 ³⁰	60×10 ³⁰	90×10 ³⁰			
Achieved operational values (as of 2007)										
Au-Au	103	1.1	0.8		14×10 ²⁶	54×10 ³⁰	140×10 ³⁰			
p↑-p↑	111	130	1	60 %	20×10 ³⁰	20×10 ³⁰	35×10 ³⁰			
d-Au	55	120/.7	2		2×10 ²⁸	8×10 ³⁰	28×10 ³⁰			
Cu-Cu	37	4.5	0.9		80×10 ²⁶	32×10 ³⁰	79×10 ³⁰			

Alexei Fedotov, June 26 2007, PAC07

2007 RHIC run with Au ions

A. Drees TUOCKI02

8

Major upgrades

- **1.** Electron Beam Ion Source (EBIS)
- 2. Stochastic cooling
- 3. Electron cooling for RHIC-II
- 4. Low-energy RHIC operation
- 5. eRHIC

Electron Beam Ion Source (EBIS)

- Current ion pre-injector: upgraded Model MP Tandem (electrostatic)
- Plan to replace with: <u>Electron Beam Ion Source, RFQ,</u> and short linac
- \rightarrow Can avoid reliability upgrade of Tandem
- → Expect improved reliability at lower cost
- \rightarrow New species: U, ³He[†]

Electron Beam Ion Source (EBIS)

- New high brightness, high charge-state pulsed ion source, ideal as source for RHIC

- Produces beams of all ion species including noble gas ions, uranium (RHIC) and polarized He³ (eRHIC)
- Achieved 1.7×10^9 Au³³⁺ in 20 µs pulse with 8 A electron beam (60% neutralization)
- Construction schedule: FY2006 09

Microwave stochastic cooling

M. Blaskiewicz, M. Brennan et al.

- Longitudinal cooling of low intensity proton bunch at 100 GeV was first demonstrated in 2006.
- Longitudinal cooling for Au ions was made operational in Yellow ring in 2007.
- Longitudinal cooling in Blue ring under development.
- Design work started on transverse cooling.

Longitudinal stochastic cooling in Yellow ring 13

M. Blaskiewicz et al., WEYC02

RHIC performance for Au ions

2007 run (with longitudinal stochastic cooling in Yellow ring)

RHIC II – major luminosity upgrade

Parameter	unit	Enhanced design	RHIC II	[
Au-Au operation								
Energy	GeV/n	100	100					
No of bunches		111	111					
Bunch intensity	10 ⁹	1.0	1.0					
Average <i>L</i>	10 ²⁶ cm ⁻² s ⁻¹		70					
<u>p↑- p↑ operation</u>	I			Already achieved				
Energy	GeV	250	250	and exceeded				
No of bunches	•••	111	111					
Bunch intensity	1011	2.0	2.0					
Average <i>L</i>	10 ³⁰ cm ⁻² s ⁻¹	150	400					
Polarization $\mathcal P$	%	70	70					

BROOKHAVEN

Alexei Fedotov, June 26 2007, PAC07

RHIC II – luminosity (nucleon-pair) projection

Alexei Fedotov, June 26 2007, PAC07

Electron cooling section at RHIC 2 o'clock IP

Each electron beam cools ions in Yellow ring of RHIC then the same beam is turned around and cools ions in Blue ring of RHIC.

Alexei Fedotov, June 26 2007, PAC07

Energy Recovery Linac (ERL) for RHIC-II

Cooling of Au ions at 100 GeV/n:

- 54.3 MeV electron beam
- 5nC per bunch
- rms emittance $< 4 \ \mu m$

• rms momentum spread $< 5 \times 10^{-4}$

D. Kayran, THPAS096

Cooling of Au ions for RHIC-II (simulations) 20

BETACOOL (JINR, Russia) simulation. included effects: intra-beam scattering, electron cooling, particle loss in collisions ("burn-off"), loss from rf bucket. number of bunches: 111 initial $\epsilon_{95\%,n} = 15 \ \mu m$ rms momentum spread 5×10^{-4} $\beta^* = 0.5m$

Electron cooling for RHIC-II: bunch length control (simulations)

High-energy Electron Cooling system for RHIC-II

- 1. Provides cooling of various ion species at 100 GeV/nucleon.
- 2. Delivers luminosity required by RHIC-II upgrade.
- **3.** Maintains short bunch length which is important for detectors.
- 4. Provides pre-cooling of protons (above transition energy) to required transverse and longitudinal emittances.
- 5. Provides cooling of various ion species at other collisions energies in the range of 25-100 GeV/nucleon.

Low-energy RHIC operation

There is substantial and growing interest in RHIC heavy ion collisions with c.m. energy in the range $\sqrt{s_{NN}}$ = 5-50 GeV/nucleon

- Corresponds to Au beams in RHIC of γ=2.68 to 26.8
- Nominal Au injection is γ =10.52, already below design γ =12.6

RIKEN workshop (BNL, March 9-10, 2006): "Can we discover the QCD critical point at RHIC?"

Suggested energy scan: √s_{NN} = 5, 6.3, 7.6, 8.8, 12.3, 18, 28 GeV/nucleon

Test runs at low energies were done (T. Satogata et al.).

 Pre-cooling of ion beam in AGS for efficient injection into RHIC at lowest energies (with significant potential for luminosity gain) is under investigation.

Low-energy RHIC operation: 2.5-25 GeV/n

Landmark study. Physicists have seen a smooth transition from bound quarks to quark-gluon plasma (dotted line). They now hope to find the point beyond which the transition becomes violent (white line).

Low-energy RHIC operation: June 11, 2007 test Run at $\sqrt{s} = 9.1 \text{ GeV/n} (\gamma = 4.93)$

T. Satogata et al. TUPAS103

Alexei Fedotov, June 26 2007, PAC07

Electron-Ion collider (eRHIC)

Alexei Fedotov, June 26 2007, PAC07

eRHIC

Two accelerator design options developed in parallel (2004 Zeroth-Order Design Report):

- 1. ERL-based design "Linac-Ring":
- Superconducting energy recovery linac (ERL) for the polarized electron beam.
- Peak luminosity of 2.6×10^{33} cm⁻²s⁻¹ with potential for even higher luminosities.
- Uses electron cooling to pre-cool heavy ions and protons.
- R&D for a high-current polarized electron source needed to achieve the design goals.
- 2. "Ring-Ring" option:
- Electron storage ring for polarized electron or positron beam.
- Technologically more mature with peak luminosity of 0.47×10^{33} cm⁻²s⁻¹

RHIC upgrades are designed to provide

a comprehensive "QCD Laboratory"

to study

- the nature of quark-gluon matter
- the detailed properties of the "glue" that binds matter in these various forms
- the full understanding of how complex QCD structures combine to form the observed properties of the proton

Acknowledgements

We are grateful to the members of Brookhaven's Collider-Accelerator Department whose work is summarized in this presentation.

Work supported by the US Department of Energy.

