

High Gradient Induction Accelerator*

G. J. Caporaso, S. Sampayan, Y.-J. Chen, D. Blackfield, J. Harris, S. Hawkins, C. Holmes, M. Krogh^a, S. Nelson, W. Nunnally^b, A. Paul, B. Poole, M. Rhodes, D. Sanders, K. Selenes^c, J. Sullivan, L. Wang and J. Watson

Lawrence Livermore National Laboratory

P. O. Box 808, L-645 Livermore, CA 94551 ^aUniversity of Missouri, Rolla ^bUniversity of Missouri, Columbia ^cTPL Corporation, Albuquerque, NM

Particle Accelerator Conference June 25-29, 2007

* Patents Pending. This work was supported under the auspices of the US Department of Energy, the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

- A new type of compact induction accelerator promises to increase accelerating gradients by at least an order of magnitude over that of existing machines
- The accelerator is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and grew out of work to develop a compact flash x-ray radiography source
- Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented

Outline

- Dielectric Wall Accelerator (DWA) for flash x-ray radiography
- Critical technologies for the DWA
 - High gradient insulator technology
 - Blumlein development
 - Solid-state switch development
 - Dielectric materials
- Proton therapy concept
- Summary

DWA technology originated with a desire for more compact flash x-ray sources

20 MeV, 2 kA DWA

• existing LIA sources have gradients < 0.5 MV/m

Dielectric Wall Accelerator (DWA) incorporates pulse forming lines into a high gradient cell with an insulating wall

Beam

Research Program

Lawrence Livermore National Laboratory

HGIs have withstood extreme conditions

- On ETA-II (5.3 MeV, 2 kA, 50 ns pulses)
- 17 MV/m insulator gradient
- Beam dump in vicinity of insulator
- Line of sight to beam

100 MV/m, 3 ns

Oil switch/Polypropylene Blumlein has achieved 100 MV/m stress in transmission lines for 5 ns pulses

SiC photoconductive switches offer unique advantages*

Beam Research Program Lawrence Livermore National Laboratory

SiC switch demonstrates fast operation*

 SiC photoconductive switch that closes AND opens promptly has been demonstrated at 27.5 MV/m gradient

* Patent pending

Beyond 27 MV/m, field enhancements must be managed at triple junction interface

Large enhancements are present at electrode interface

Beam Research Program Lawrence Livermore National Laboratory

Modified electrode geometries are being pursued for increased gradients*

* Patents pending

A new castable dielectric is one of the possible materials for a DWA*

Cast dielectric has high bulk breakdown strength > 400 MV/m (small samples) and can have epsilons from \approx 3 up to \approx 50 for transmission lines

Embedded electrodes can withstand 100 MV/m

System gradient > 100 MV/m (counting electrode thickness)
Performance for a thinner (SiC) configuration should be better

Novel ZIP line stack will form the heart of a high gradient cell

Beam Research Program Lawrence Livermore National Laboratory

Duroid stack used for initial tests

Output Monitor

Oil Spark-gap Switches

• 4 ZIP lines (300 kV each)

- RT Duroid ₈_r=10 (1st
- stack < 200 kV each)</pre>
- cast dielectric s_r=10
 (2nd stack for cell)
- oil switches
- 25 ns pulsewidth
- 1.2 meters long
- 0.2 meters high
- 0.1 meters wide

• 1.2 MV total, 10 kA into a matched load (power delivered to a matched load = 12 GW, energy delivered = 300 J)

All four Duroid ZIP lines are switching within the required interval

Beam Research Program Lawrence Livermore National Laboratory

Stack of 4 cast ZIP lines will be used for beam tests on ETA-II

- First cast dielectric ZIP line ($\epsilon_r = 10$), 25 ns pulse
- Design charge voltage = 300 kV
- Passed qualification test at 165 kV charge

CAD Image of 1.2 MV cell for ETA-II Testing Beam load will be 2 kA

Cast dielectric opens up new possibilities for cell architectures*

Constant impedance radial ZIP line

 varying ε, μ and width of lines with radius such that Z(r) is constant results in distortionless transmission

* Patents pending

$$Z(r) = \frac{60w(r)}{r} \sqrt{\frac{\mu(r)}{\varepsilon(r)}}$$

example: vary relative **e** only or relative **µ** only

 $\varepsilon(r) = \varepsilon_{\min} \left(\frac{b}{r}\right)^2 \qquad \mu(r) = \mu_{\max} \left(\frac{r}{b}\right)^2$

We have been investigating the potential application of the DWA to cancer therapy

- Requires 70 250 MeV at ≈ ten nanoamperes average current
- Current space requirements preclude use in most hospital facilities; large capital investment required

protons 100 8 80 70 relative dose MV 60 X rays 50 40 fast 30 neutrons electrons 10 10 CM depth in tissue

Research Program

Lawrence Livermore National Laboratory

Beam

X-ray treatment machines fit in a single room - <u>this is our goal</u> <u>for a compact proton</u> <u>machine</u>

DWA can be used in the single pulse traveling wave mode*

HGI characteristics imply that the highest gradients will be attained for the shortest pulses

A high on-axis gradient is maintained as long as $\theta \le 0.3$ This implies pulses in the range of a fraction to several ns

*patent pending

DWA can be used in the single pulse traveling wave mode*

Longitudinal Electric Field Plot

Compact proton radiotherapy system concept*

- Pencil beam can be *mechanically* scanned in x and y
- Flexible dose delivery via pulse-to-pulse variable energy and intensity
 - Energy range 70 250 MeV
- Multiple patient delivery configurations possible to accommodate available space

Research Program

Lawrence Livermore National Laboratory

Beam

We are working with Tomotherapy, Incorporated to develop a compact proton DWA

- System will provide CT-guided rotational IMPT
- Goal is to fit machine in a standard linac radiation vault
- The beam intensity, spot size and energy can be varied from pulse to pulse without the use of any beam intercepting methods
 - No range shifting wedges or scattering masks
- Tomotherapy has licensed the DWA technology from the Lawrence Livermore National Laboratory and has a Cooperative Research and Development Agreement (CRADA) with LLNL

Beam Research Program

Near term plans for proton accelerator development

- We are working towards development of a subscale prototype over the next 18 months
 - A small length of accelerator sufficient to verify the accelerator architecture and HGI performance with SiC switches

- New SiC switches over next 6 months
 - Optimized dopant levels to lower "on" resistance and improve quantum efficiency
 - High voltage packaging
- Subscale prototype
 - Integrate components into a proof-ofprinciple device
 - Electron demonstration in 6 months
 - Proton demonstration within 18 months

- DWA promises to dramatically increase the accelerating gradient of high current accelerators
- Good progress is being made on the technologies needed for the DWA
 - Closing switches
 - Oil gaps (> 100 MV/m stress)
 - SiC photoconductive switch (27.5 MV/m stress)
 - Pulse forming line dielectric materials (> 400 MV/m)
 - High gradient vacuum insulators (up to 100 MV/m)
- Compact proton therapy accelerator concept has been described

- D. Blackfield, et al., "Injector Particle Simulation and Beam Transport in a Compact Linear Proton Accelerator", TUAS057
- S. Nelson, et al., "Electromagnetic Simulations of Linear Proton Accelerator Structures using Dielectric Wall Accelerators", TUPAS058
- Y.-J. Chen and A. Paul, "A Compact Accelerator for Proton Therapy", TUPAS059
- B. Poole, et al., "Particle Simulations of a Linear Dielectric Wall Proton Accelerator", TUPAS060
- L. Wang, et al., "Electromagnetic and Thermal Simulations for the Switch Region of a Compact Proton Accelerator", TUPAS061
- J. Harris, et al., "Vacuum Insulator Studies for the Dielectric Wall Accelerator", WEPMS014

