Advances in High-Power Targets

PAC 07

Albuquerque, NM

June 26, 2007

Harold G. Kirk Brookhaven National Laboratory

The Drive for Intense (MW Class) Sources

PAC

In Operation:

LANSCE: 0.8 MW -- 0.8 GeV Protons PSI: 1.2MW -- 0.6 GeV Protons CERN SPS: 0.5MW -- 400 GeV Protons

Under Construction: SNS: 1.4 MW – 1 GeV Protons JPARC: 0.75MW -- 50 GeV Protons

Under Consideration:

BNL AGS: 2MW -- 30 GeV Protons ISIS: 1MW -- 0.8 GeV Protons FNAL Main Injector: 2MW -- 120 GeV Protons JPARC: 4MW -- 50 GeV Protons SNS: 2MW -- 1 GeV Protons SPL: 4MW -- 3.5 GeV Protons

The Challenge: Convert to Secondaries

Target

Secondary Beams for New Phyisics Neutrons (e.g. for neutron sources) π's (e.g. for Super v Beams) μ's (e.g. for Muon Colliders, Neutrino Factories) Kaons (e.g. for rare physics processes) γ's (e.g. for positron production) Ion Beams (e.g. RIA, EURISOL, β-Beams)

Facilities with High-Power Target Interest

PAC07

AGS **EURISOL** ISIS LANCE **Neutrino Factory** ILC **SINQ**

ESS IFMIF **JPARC Muon Collider** NUMI **RIA SNS**

High-power Targetry Challenges

High-average power and high-peak power issues

PACU

- Thermal management
 - Target melting
 - Target vaporization
- Radiation
 - Radiation protection
 - Radioactivity inventory
 - Remote handling
- Thermal shock
 - Beam-induced pressure waves
- Material properties

Choices of Target Material

• Solid

- Fixed
- Moving
- Particle Beds
- Liquid
- Hybrid
 - Particle Beds in Liquids
 - Pneumatically driven Particles

PAC07

Desirable Attributes for High-Power Targets

- \bullet High heat capacity, $C_{\rm V}({\rm to\ reduce\ thermal\ load})$
- Low thermal expansion, α_T (especially for pulsed beams)
- •Low bulk modulus, **Y** (to reduce stress)
- High yield strength, (for solids to resist fracturing)
- Good diffusivity (to quickly move the heat away)
- Resistance to irradiation damage (to retain the beneficial properties)

PAC:07

Stress = Y a_T U / C_V Where U is energy deposition

(> 100 J/g is Considered Aggressive)

Static Solid Target Examples

A

A. CERN CNGS Carbon 750 J/g He Gas Cooled

B. FNAL NUMI Carbon 350 J/g Water Cooled

C. JPARC T2K

Carbon 170 J/g

He Gas Cooled
D. Los Alamos NS

Tungsten 100 J/g

PAC07

Moving Solid Target Examples

B

- A. KEK Kaon Target-Ni Pulsed 600 J/g Water Cooled
- B. PSI Target-M- Carbon CW 30 J/g Radiation Cooled
- c. FNAL Pbar Target-Various materials Pulsed 800 J/g Air Cooled

Liquid Target Examples

- A. ORNL SNS Pulsed 1J/g
- B. PSI MEGAPIE CW 125W/g
- c. U.S. Neutrino Factory Pulsed 160J/g

High-Power Targetry R&D

Key Target Issues for high-power targets

- What are the power limits for solid targets?
- Search for suitable target materials (solid and liquid) for primary beams > 1MW

PACU

- Optimal configurations for solid and liquid targets
- Effects of radiation on material properties
 - Target materials
 - Target infrastructure
- Material limits due to fatigue
- Design of reliable remote control systems

Fatigue Testing

R. Bennett, et al Rutherford Appelton Lab

The test concept: Pulse the wire "target" with equivalent energy and pulse structure.

Tantalum wire broke after 3 x 10⁶ pulses.

Tungsten wire has survived > 19 x 10⁶ pulses

1Year at 50 Hz is ~ 10⁹ pulses Harold G. Kirk

Experimental Setup

PAC07

SNS Target : The Pitting Issue

After 100 pulses at 2.5 MW equivalent intensity Effect has been identified as resulting from cavitation development within the Hg followed by violent collapsing of the the bubbles near the Stainless Steel surface.

SNS Team has been pursuing several options:

- Gas layer near container surface
- Kolsterizing the SS surface
- Bubble injection

PAC07

Further R&D is ongoing

The Neutrino Factory Target Concept

PAC07

MERIT Experiment at CERN

Installed in the CERN TT2a Line

PAC07

MERIT Scientific Goals

Milestone towards demonstration of a 4MW target concept

Study MHD effects of pion capture scheme with Hg-jet and 15T solenoid

Jet dispersal at t=100µs with magnetic field varying from 0 to 10 Tesla

Study jet disruption and cavitation by varying the PS spill structure MERIT: 180 J/g

- 30TP@24GeV protons
- 1cm diam. 20m/s Hg-jet
- 1.2×1.2 mm² beam size rms

Pump-Probe with Particle Detectors

Harold G. Kirk

PAC07

Material Properties R&D

Irradiation studies are being undertaken at many facilities:

PAC07

- BNL BLIP
- Los Alamos Lance
- RAL ISIS
- CERN ISOLDE
- PSI
- Triumf

New facilities are being proposed:

• IFMIF

Strain Gauge Measurements

Stress = BNL E951: 24 GeV, 3 x 10¹² protons/pulse $Y \alpha_T U / C_V$ **BNL E951 Target Experiment** 24 GeV 3.0 e12 proton pulse on Carbon-Carbon and ATJ graphite targets Recorded strain induced by proton pulse 10 **ATJ** Graphite C-C composite ATJ Graphite 8 F **Microstrain** -4 -6 **Carbon-Carbon** -8 Composite 0.0002 0.0004 0.001 0 0.0006 0.0008 Time (sec)

PAC07

Super-Invar CTE measurements

Harold G. Kirk

PAC07

Carbon-Carbon Composite

Recovery of low α_T

PAC07

Carbon-Carbon anneals at ~200°C

Super-Invar anneals at ~600°C

Degradation of Carbon-Carbon

Beam footprint on targets (1σ)

Carbon-Carbon Composite before irradiation

Carbon-Carbon Composite after exposure to fluence of **10²¹** protons/cm²

Harold G. Kirk

PAC07

Super-Invar Tensile Testing

PAC07

Tensile testing shows that Super-Invar strengthens while remaining ductile (at the 0.25 dpa level)

A New Approach I

PACU

Fluid Cooled Particle Bed

Advantages for a granular approach

- Reduced sample volume results in reduced sample thermal gradient
- Large surface/volume ratio leads to better heat removal
- Better liquid or gas conduction through the target
- Simpler stationary solid target approach
- Could utilize high-Z target material

Peter Sievers, CERN

New Approach II

Summary

The R&D Program for the development of highpower targets is diverse and includes exciting new ideas—but:

- Solutions for >1MW primary beam targets are still unproven
- Target test facilities are lacking more in beam experiments like MERIT are needed
- Search for suitable target materials is an important ongoing effort with wide reaching impact

PACU

• More irradiation experiments are needed

