PAC '07, 25th June to 29th June, Albuquerque

W. Bartmann, M. Benedikt, C.Carli, B. Goddard, S. Hancock, J.M. Jowett, Y. Papaphilippou

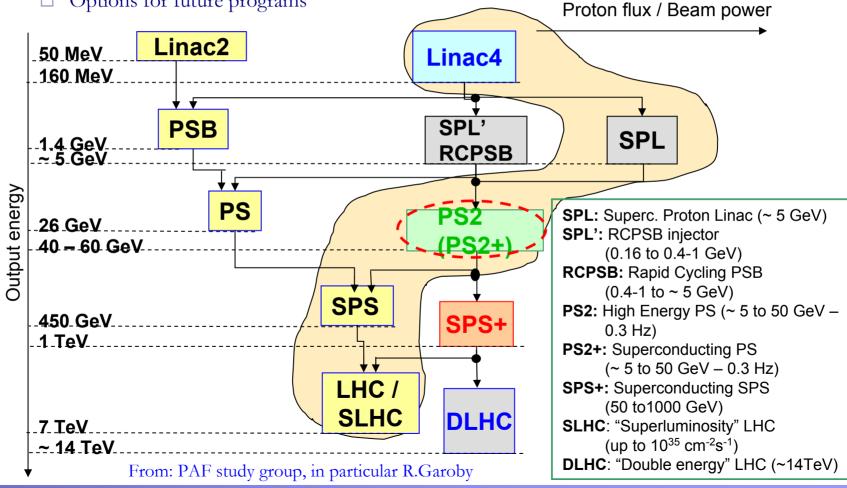
26th June, 2007

Content

Introduction

□ Motivation

□ Requirements for PS2


- Design Considerations
- Longitudinal Aspects
- Layout
- Plain FODO Lattice
- Doublet and Triplet Lattices
- Negative Momentum Compaction (NMC) Modules
- Summary and Outlook

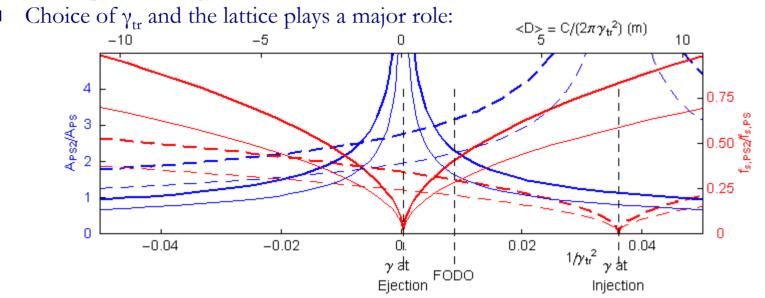
Introduction - Motivation

- Proton Accelerators for the Future (PAF) study identify upgrade scenario
 - Reliable operation for the LHC (allow ultimate LHC beam)
 - Options for future programs

Introduction – Requirements for PS2

- Replace the ageing PS and improve options for physics
- Integration in existing complex
- Versatile machine:
 - □ Many different beams (and bunch patterns)
 - □ Protons and ions (performance if SPL injector ?)
- Transfer operations
 - □ Injections:
 - H- charge exchange injection for protons (assuming SPL as injector)
 - Fast injection for ions (low magnetic field)
 - \Box Ejections:
 - Fast single turn ejection (e.g. LHC beams)
 - Multiturn ejection (beam cut transversally in ~5 pieces) for SPS fixed target
 - Slow ejection (~1s spill) for PS2 physics

Design Considerations



- Considerations on machine circumference C_{PS2} :
 - □ PS2 ejection energy: 50 GeV (improve SPS performance)
 - \Box C_{PS2} ~ 2 C_{PS} (no superconducting high field magnets for robust operation)
 - \square SPS filling (5 turn PS2 ejection) and abort gap: $C_{PS2} \sim C_{SPS}/5 = 2.2 C_{PS}$
 - □ Analysis of possible bunch patterns required: $C_{PS2} = (15/77) C_{SPS} = 1346.4 \text{ m}$
- Required performance:
 - \Box LHC scenarios: up to 4.0×10¹¹ per LHC bunch (20% reserve for losses), spaced by 25 ns (average line density fixed), normalized rms emittances 3.0 μ m
 - ➢ Fixes (with direct space charge tune shift: 0.2) injection energy: 4 GeV
 - High intensity SPS physics beam with single transfer from PS2 determines aperture
- RF for bunch pattern for LHC options
 - \Box Extrapolation of present PS scheme:
 - Tunable "10 MHz" system and various RF gymnastics involving higher fixed frequency cavities
 - \Box Single ~40 MHz RF system with little tuning for acceleration:
 - Incompatible with ion operation
 - Proton bunch structure implemented at injection with chopping of SPL

Longitudinal Aspects

- The increase of working range (PS: 1.4 -> 26GeV, PS2: 4 -> 50GeV):
 - □ Slows down longitudinal motion while increasing acceptances
 - □ Impacts on RF gymnastics

Acceptance (blue) and adiabaticity (red) penalty functions

at injection (dashed) and ejection (solid)

keeping RF Voltages of present PS (thin lines) and doubling gradients (thick lines)

• Search for lattices with imaginary γ_{tr} :

- □ Avoid transition crossing
- \Box Extrapolation of PS scheme: $1/\gamma_{tr}^2 = -.01$ implies a factor 2 longer gymnastics at ejection

Layout

Golf (9 trous)

Racetrack:

Tunnel LHC

- Integration into existing/planned complex:
 - Beam from Linac4 (close to PSB and PS) & SPL

PS2

- □ Short transfer to SPS
- $\hfill\square$ Ions and protons from existing complex
- All transfer channels in one straight
- Minimum number of D suppressors
 - High bending filling factor (Required to reach 50GeV)

cern.ch

PM18

SPI

Zone d'implantation des bâ

Zone d'extension EURISOLE

150

= E)

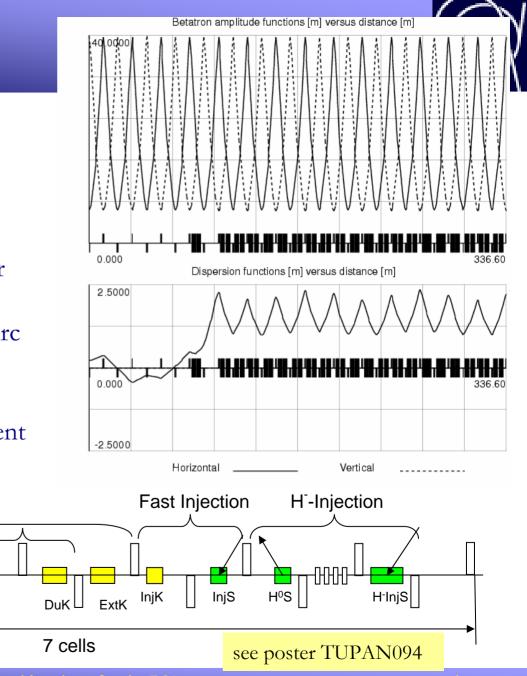
40

Linac4

Plain FODO Lattice

- Conventional Approach:
 □ FODO with dispersion suppressors for D = 0 m in straights
 - 90° phase advance per cell for injection/ejection equipment
 - □ 7 cells/straight and 22 cells/arc -> in total 58 cells
 - $\Box Q_{\rm H} = 14.5, Q_{\rm V} = 14.5$

MS2


MS1

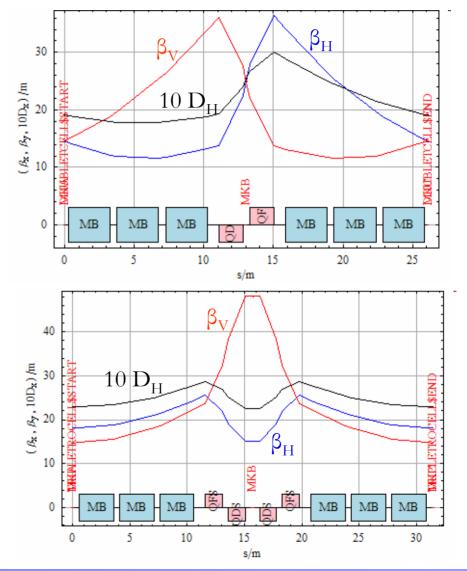
□ Only complete lattice at present

Extraction

MTEBK

ES

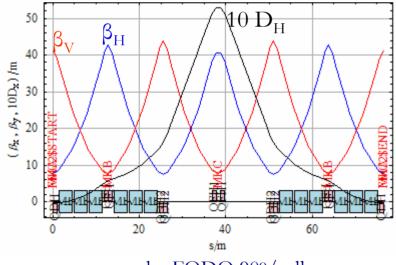
MTEBK


BD

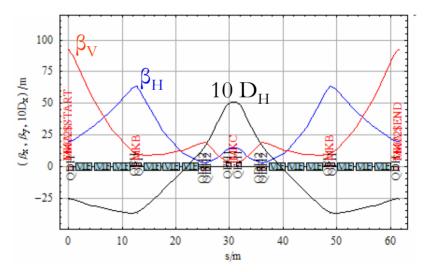
Doublet and Triplet Lattices

Doublet:

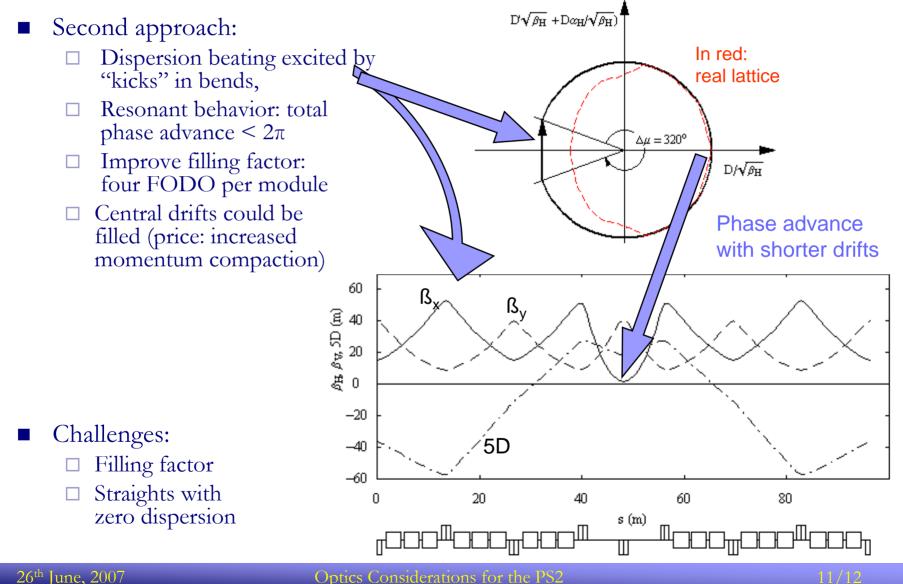
- □ Long straight sections
- Inefficient focusing (high gradients)
- Put aside at present


Triplet:

- Long straight sections
- Small maximum ß's in bending magnets
- Inefficient focusing (high gradients)
- Put aside at present


Negative Momentum Compaction (NMC) Modules

- Negative dispersion in bendings needed
- Similar to and inspired from existing modules (e.g. J-PARC, many studies)
- First approach (one module made of three FODO cells):
 - □ Match regular FODO (no bends in central cell) to given phase advance
 - □ reduced distance and rematch only central quads to given phase advance (in general three times that of the FODO)


regular FODO 90°/cell -> zero dispersion at beginning/end

reduced drift in center, average 90°/cell -> negative dispersion at beginning/end $\gamma_{tr} \sim 10$ i (for whole PS2)

Negative Momentum Compaction (NMC) Modules

Summary and Outlook

- Study on PS2 to replace the ageing PS started (in the frame of more general investigations on CERN complex upgrades)
- Different lattice types investigated
 - □ FODO type lattice a good candidate and well advanced
 - □ NMC lattice based on FODO a candidate
 - No transition crossing
 - Challenge: high dipole filling factor, matching to straights with zero dispersion
- Outlook:
 - □ Complete a lattice based on NMC modules
 - □ Revise longitudinal gymnastics (momentum compaction acceptable ?)
 - □ Thorough study of non-linear dynamics and instabilities
 - □ Foreseen schedule:
 - Completion of PS2 Study: 2010
 - Decision and start of construction : 2012 (?)