26 June 2007 PAC2007, Albuquerque, NM

Status of J-PARC Main Ring Synchrotron

Tadashi Koseki Accelerator Laboratory, KEK

Contents

- 1. Overview of J-PARC
- 2. Status of Linac/RCS
- 3. Construction status
- 4. Performance test of accelerator components
- 5. Commissioning plan
- 6. Summary

Overview of J-PARC

- Accelerators and experimental facilities -

The facility is constructed in the Tokai site (~100 km north from Tokyo) as a joint project between KEK and JAEA.

Accelerator configuration (day-one, 1st phase) Linac(181MeV)+RCS(3GeV)+MR(30GeV)

Experimental facilities (1st Phase) RCS beam : Materials and Life Science experimental facility(MLF) MR beam: Hadron Beam Facility and Neutrino Beam Facility

Photograph in Nov. 2006

Status of Linac

Front-end part

source of the second seco

DTL (27 m)

Ion source, LEBT, RFQ, MEBT(2 choppers, 2 bunchers)

Beam commissioning of the linac has been started in November 2006.

January 24 th : First beam from SDTL, 181 MeV, 5 mA, 20 µsec, 2.5 Hz: Nominal beam energy in the day-one configuration was achieved.

Typical beam parameters in recent studies are 181 MeV, 5/26 mA, 50μ sec, 2.5/5 Hz.

THYAB02 by K. Hasegawa.

Status of RCS

Installation and performance test of the accelerator components are in progress.

Beam commissioning will be started in September 2007.

MR (slow cycling Main Ring synchrotron)

Circumference	1567.5 m	Beam abort line	Fast extraction	Hadron
Repetition rate	0.3 Hz	<u>A</u>		Experimental Hall
Injection energy	3 GeV		Rf cavities	
Extraction energy	30 GeV (nominal)			
	50 GeV (2nd phase	RCS Neut	trino beamline	
Superperiodicity	3			
h	9	BT collimators	*	
No of bunches	8	3-50 BT		
Transition γ	j 31.7			Hadron beamline
Typical tune	22.4, 20.8	Injection		Slow extraction
Transverse emitta	nce	Ring collimators		
At injection	~54 πmm-mrad			
At extraction	~10 πmm-mrad(30	GeV)		
Beam power	0.75MW at 0.3 Hz,	50 GeV To Super-Kami	iokande	

Three dispersion free straight sections of 116-m long:

- Injection and collimator systems
- Slow extraction

to Hadron experimental Hall (Rare decay, hyper nucleus..)

-Rf cavities and Fast extraction (beam is extracted inside/outside of the ring) outside: Beam abort line (at any energies when hardware failure occurs) inside: Neutrino beamline (intense v beam is send to SK located 300 km west)

Construction status of MR

EXAMPLE Civil construction of the accelerator tunnel has been completed in November 2006.

Installation of the components is now in progress.

		3-50 BT	MR
	dipoles	3(h), 2 (v)	96
*	quadrupoles	38	216 (11 families)
	sextupoles	0	72 (3 families) 8(slow ext.)
	steerings	14	186

3-50 BT (beam transport line between RCS and MR)

ow Extraction

AB

1. Installation of magnets :

IC Fast Extraction

MR

第二黨項棟印

- 2. Alignment of magnets :
- 3. Installation of beam ducts and BPMs:
- 4. Wiring (power cables): Wiring (signal cables) :

MR

AC

Injectⁱ IA

Power supply buildings are D1, D2, D3

Carrying buildings are C1,C2

Cooling Water and Air-Conditioning buildings are M1, M2, M3

- 1. Installation of B, Q, S magnets :
- 2. Installation of steering Magnets :
- 3. Alignment of main magnets:
- 4. Installation of beam ducts :
- 5. Installation of BPMs :
- 6. Wiring the cables:

Installation of power supplies

Finished In progress (~80 % finished) In progress (~70 % finished) Finished In progress (~90% finished)

Finished

In progress (~50 % finished) In progress (~40 % finished) In progress (~60 % finished) In progress (~90 % finished) Just started in April 2007

D3 (50 %), D2 (30 %), D1 (30 %)

Installation status (3-50BT and MR)

Pulsed Bending Magnet at 3-50BT

Extracted beam from RCS is switched to MR/MLF by the Pulsed Bending Magnet

Injection devices

Slow extraction devices

Third-integer slow extraction scheme is adopted with 4 bump magnets, 8 sextupoles, 2 ESS's and 10 septum magnets.

Bump magnets, ESS's, septum magnets are ordered and manufactured in JFY 2007.

Thin septum wire of ESS is a key subject to achieve high extraction efficiency.

R&D of thin septum wire using a half-length ESS model 30μm ribbon type septum made of Tungsen-26%Rhenium : 170 kV/25mm gap (corresponds 50-GeV extraction) is applied. Alignment error ~ 30 μm

Adopt the 30 μm ribbon type to ESS

Fast extraction devices

Fast extraction system comprises 5 bipoler kicker magnets and 6 bipolar septum magnet systems. Fast extraction beam is bent inward and abort beam is bent outward. All the fast extraction devices have been manufactured and delivered to KEK/JAEA.

Performance tests of the devices are now underway.

Magnetic field and vibration measurements of SM30

Schedule of beam commissioning

Most of the accelerator components including rf systems, ring collimators and beam diagnostics systems will be installed by the end of November 2007.

Off-beam commissioning will be started in December 2007.

From July to November 2008, slow extraction devices and neutrino beamline components (superconducting dipoles) are planned to install.

Beam commissioning plan of MR

Beam commissioning (May 2008 -) RCS beam : without painting, 4e11 ppb (1 % intensity), single shot ~ 25 Hz

1st stage (May 2008-June 2008): Beam transport of 3-50 BT, injection, closed orbit, rf capture Available dump is the injection dump

2nd stage(Dec. 2008-Feb. 2009): Acceleration form 3 to 30 GeV, Fast extraction to abort line, slow extraction The dumps at the abort beamline and HD beamline are available

3rd stage(Apr. 2009-):

Fast extraction to neutrino beamline The dump at the NU beamline is available

-> we will focus on the higher beam intensity.

Requirement from the T2K collaboration :

100 kW operation for $> 10^{7}$ sec (several months) by the 2010 summer shutdown

Detuning effect of the low energy space charge for J-PARC Main Ring

Footprint of the MR beam at the injection energy for different beam power.

Beam power = 1.8kW/bunch (300kW from RCS-> 150 kW from MR) Bunching factor ~ 0.2 Chamber size = ± 70 mm

A few years after the commissioning

Beam power = 3.6kW/bunch (600kW from RCS)

FRPMN036 by A. Molodozhentsev

Particle losses during the acceleration process

For 300 kW beam from the RCS:

Particle losses during the acceleration for the RF pattern (40kV -> 280kV). MR_collimator acceptance = 60π I nitial mis-matched beam (10% beta mismatching).

Then $\varepsilon_{99.9\%}$ for 30GeV beam ~ 12 π

THPAN039 by A. Molodozhentsev

Summary

- Installation of the accelerator components of the MR is on schedule.
- The performance test of the injection and fast extraction devices are now in progress.
- For slow extraction devices, most of the components are ordered and manufactured in 2007JFY. They will be installed in the summer of 2008.
- Off beam commissioning of the MR will be started in December 2007.
- Beam commissioning will be started in May 2008.
- Papers in PAC07 -

MOPAN031: K. Fan, Design Study of a Very Large Aperture Eddy Current Septum for J-PARC
MOPAN032: K. Fan, Eddy Current Effects in an Opposite-Field Septum
MOPAN033: K. Fan, High-Field Septum Magnets for Slow Extraction System of J-PARC
TUPAN051: M. Tomizawa, Design of Dynamic Collimator for J-PARC Main Ring
TUPAN052: M. Tomizawa, New Beam Optics Design of Injection/Fast Extraction/Abort Line of J-PARC Main Ring
TUPAN055: M. Yoshii, J-PARC Ring RF Accelerating System
THPAN036: Y. H. Chin, ABCI Progresses and Plans:Parallel Computing and Transverse Napoly Shobuda Integrals
THPAN039: A. Molodozhentsev, Space Charge Effects for J-PARC Main Ring
THPAN040: K. Ohmi, Study of Halo Formation in J-PARC-MR
FRPMN036: A. Molodozhentsev, Correction Systems for J-PARC Main Ring