Low Emittance Muon Colliders

Rolland Johnson, Muons, Inc.

In February, Muons, Inc. and the Fermilab TD sponsored the <u>second</u> annual low-emittance muon collider workshop at Fermilab (~85 participants). Muon Colliders are looking more feasible. Synergies with the ILC and Neutrino Factories can be important.

Papers can be found at http://www.muonsinc.comworkshop link is athttp://www.muonsinc.com/mcwfeb07/ also seehttp://www.muonsinc.com/mcwfeb06/presentations/LEMCWorkshop.pdf

Related Muon Work at PAC07

MOPAS012 - Magnets for the MANX Cooling Demonstration Experiment V. Kashikhin... **MOPAN117 - Magnet Systems for Helical Muon Cooling Channels** S. A. Kahn... MOPAN118 - High Field HTS Solenoid for Muon Cooling S. A. Kahn... WEPMS071 - Evidence for Fowler-Nordheim behavior in RF Breakdown M. BastaniNejad... THPAN103 - G4BeamLine Program for Matter-dominated Beam Lines T. J. Roberts... **THPMN096 - Stopping Muons Beams** M. A. C. Cummings... THPMN110 - Design of the MANX 6D Demonstration Experiment K. Yonehara... THPMN094 - Simulations of Parametric-resonance Ionization Cooling D. Newsham... THMN095 - Muon Bunch Coalescing R. P. Johnson... THPMN106 – Use of Harmonic RF Cavities in Muon Capture for NFs or MCs D. Neuffer...

New inventions, new possibilities

Muon beams can be cooled to a few mm-mr (normalized)

- allows HF RF (implies <u>Muon machines and ILC synergy</u>)
- Muon recirculation in ILC cavities => high energy, lower cost
 - Each cavity used 10 times for both muon charges
 - Potential 20x efficiency wrt ILC approach offset by
 - Muon cooling
 - Recirculating arcs
 - Muon decay implications for detectors, magnets, and radiation
- A <u>low-emittance high-luminosity collider</u>
 - high luminosity with fewer muons
 - First LEMC goal: $E_{com} = 5 \text{ TeV}$, $\langle L \rangle = 10^{35}$
 - Revised goal is 1.5 TeV to complement the LHC
- Many new ideas in the last 5 years. A new ball game!
 - (many new ideas have been developed with DOE SBIR-STTR funding)

Muons, Inc. Muons, Inc. SBIR/STTR Collaboration:

Fermilab:

- Victor Yarba, Ivan Gonin, Timer Khabiboulline, Gennady Romanov, Daniele Turrioni
- Dave Neuffer
- Mike Lamm
- MCTF-APC, V. Shiltsev, S. Geer, A. Jansson, M. Hu, D. Bromelsiek, Y.Alexehin,...
- Chuck Ankenbrandt, Katsuya Yonehara
- Milorad Popovic, Al Moretti, Jim Griffin
- Sasha Zlobin, Emanuela Barzi, Vadim Kashikhin, Vladimir Kashikhin

HIT:

Dan Kaplan, Linda Spentzouris

JLab:

• Yaroslav Derbenev, Alex Bogacz, Kevin Beard, Yu-Chiu Chao, Robert Rimmer

Muons, Inc.:

Rolland Johnson, <u>Bob Abrams</u>, Mohammad Alsharo'a, Mary Anne Cummings, Stephen Kahn, <u>Sergey Korenev</u>, Moyses Kuchnir, David Newsham, <u>Tom Roberts</u>, <u>Richard Sah</u>, <u>Cary Yoshikawa</u> (underlined are new-3 are from Lucent)

First named are subgrant PI.

Muons, Inc. Recent Inventions and Developments

New Ionization Cooling Techniques

- Emittance exchange with continuous absorber for longitudinal cooling
- Helical Cooling Channel (HCC)
 - Effective 6D cooling (simulations: cooling factor >50,000 in 160 m)
- Momentum-dependent Helical Cooling Channel
 - 6D Precooling device (e.g. stopping muon beams)
 - 6D cooling demonstration experiment (MANX)
- Ionization cooling using a parametric resonance
- Methods to manipulate phase space partitions
 - Reverse emittance exchange using absorbers
 - Bunch coalescing (neutrino factory and muon collider share injector)

Technology for better cooling

- Pressurized RF cavities
 - simultaneous energy absorption and acceleration and
 - phase rotation, bunching, cooling to increase initial muon capture
 - Higher Gradient in magnetic fields than in vacuum cavities
- High Temperature Superconductor for very high field magnets
 - Faster cooling, smaller equilibrium emittance

Muons, Inc. Pressurized High Gradient RF Cavities

- Copper plated, stainless-steel, 800 MHz test cell with GH2 to 1600 psi and 77 K in Lab G, MTA
- Paschen curve verified
- Maximum gradient limited by breakdown of metal
 - fast conditioning seen, no limitation by external magnetic field!
- Cu and Be have same breakdown limits (~50 MV/m), Mo ~60, W ~70

PAC07

MuCool Test Area (MTA)

Wave guide to

coax adapter

5T Solenoid

Pressure barrier

800 MHz Mark II -Test Cell

DRNGER

Muons, Inc. HPRF Test Cell Measurements in the MTA

Pressure (psia) at T=293K

Results show no B dependence, much different metallic breakdown than for vacuum cavities. <u>Need beam tests to prove HPRF works.</u> Rol - 6/26/2007 PAC07 8

Muons, Inc. Understanding RF Breakdown in High Pressure Cavities: Scanning Electron Microscope Pictures of HP Electrodes

Rol - 6/26/2007 PAC07
See WEPMS071 - Evidence for Fowler-Nordheim behavior in RF Breakdown

Muons, Inc. Technology Development in Technical Division

HTS at LH2 shown, in LHe much better

Fig. 9. Comparison of the engineering critical current density, J_E, at 14 K as a function of magnetic field between BSCCO-2223 tape and RRP Nb₃Sn round wire.
 Emanuela Barzi et al., Novel Muon Cooling Channels Using Hydrogen Refrigeration and HT Superconductor, PAC05

Rol - 6/26/2007

PAC07

6-Dimensional Cooling in a Continuous Absorber see Derbenev, Yonehara, Johnson

- Helical cooling channel (HCC)
 - Continuous absorber for emittance exchange
 - Solenoidal, transverse helical dipole and quadrupole fields
 - Helical dipoles known from Siberian Snakes
 - z-independent Hamiltonian
 - Derbenev & Johnson, Theory of HCC, April/05 PRST-AB

Muons, Inc. Particle Motion in Helical Magnet

Combined function magnet (invisible in this picture) Solenoid + Helical dipole + Helical Quadrupole

Red: Reference orbit

Dispersive component makes longer path length for higher momentum particle and shorter path length for lower momentum particle.

Hydrogen Cryostat for Muon Beam Cooling

Technology for HCC components:

HTS (nice BSSCO data from TD Ph I), Helical magnet design, low T Be or Cu coated RF cavities, windows, heat transport, refrigerant Cryostat for the 6DMANX cooling demonstration experiment (proposal 7)

BNL Helical Dipole magnet for AGS spin control

Rol - 6/26/2007

PAC07

Helical Solenoid Magnet for HCCs

Simple concept simultaneously provides solenoidal, helical dipole, and helical quadrupole fields needed for HCC. Also provides momentum-dependent HCC.

Precooler + HCCs

- •The acceptance is sufficiently big.
- Transverse emittance can be smaller than longitudinal emittance.

• Emittance grows in the longitudinal direction.

Rol - 6/26/2007

Incorporate RF cavity in helical solenoid coil

Helical solenoid coil

- •Use a pillbox cavity (but no window this time).
- •RF frequency is determined by the size of helical solenoid coil.
- \rightarrow Diameter of 400 MHz cavity = 50 cm
- \rightarrow Diameter of 800 MHz cavity = 25 cm
- \rightarrow Diameter of 1600 MHz cavity = 12.5 cm
- The pressure of gaseous hydrogen is 200 atm to adjust the RF field gradient to be a practical value.

→The field gradient can be increased if the breakdown would be well suppressed by the high pressurized hydrogen gas.

parameter s	λ	К	Bz	bd	bq	bs	f	Inner d of coil	Maximum b	E	rf phase
unit	т		Т	Т	T/m	<i>T/m2</i>	GHz	ст	Snake / Slinky	MV/m	degree
1st HCC	1.6	1.0	-4.3	1.0	-0.2	0.5	0.4	50.0	12.0 / 6.0	16.0	140.0
2nd HCC	1.0	1.0	-6.8	1.5	-0.3	1.4	0.8	25.0	17.0 / 8.0	16.0	140.0
3rd HCC	0.5	1.0	-13.6	3.1	-0.6	3.8	1.6	12.5	34.0 / 17.0	16.0	140.0

Yonehara HCC Fernow-Neuffer Plot

Cooling required for 5 TeV COM, 10³⁵ Luminosity Collider, shown later. Need to also look at losses from muon decay to get power on target. Higher magnetic fields from HTS can get required HCC performance.

Rol - 6/26/2007

Parametric-resonance Ionization Cooling

Excite ½ integer parametric resonance (in Linac or ring)
Like vertical rigid pendulum or ½-integer extraction
Elliptical phase space motion becomes hyperbolic
Use xx'=const to reduce x, increase x'

Use IC to reduce x'

Detuning issues being addressed (chromatic and spherical aberrations, space-charge tune spread). Simulations underway. New progress by Derbenev.

See Sah, Newsham, Bogacz

Example of triplet solenoid cell on ½ integer resonance with RF cavities to generate synchrotron motion for chromatic aberration compensation.

P-dependent focal length is compensated by using rf to modulate p.

OptiM (Valeri Lebedev) above and G4beamline (Tom Roberts) below.

Muons, Inc. Reverse Emittance Exchange, Coalescing

- p(cooling)=100MeV/c, p(colliding)=2.5 TeV/c => room in Δp/p space
- Shrink the transverse dimensions of a muon beam to increase the luminosity of a muon collider using wedge absorbers
- 20 GeV Bunch coalescing in a ring a new idea for ph II
- Neutrino factory and muon collider now have a common path

Bhat et al. Coalescing

20 GeV muons in a 100 m diameter ring

PAC07

Muons, Inc. 6DMANX demonstration experiment Muon Collider And Neutrino Factory eXperiment

See Kashikhin, Yonehara

To Demonstrate

- Longitudinal cooling
- 6D cooling in cont. absorber
- Prototype precooler
- Helical Cooling Channel
- Use for stopping muon beams
- New technology

🛟 Fermilab

Katsuya's Simulation study

Initial beam profile

- Beam size (rms): ± 60 mm
 Δp/p (rms): ± 40/300 MeV/c
 x' and y' (rms): ± 0.4
- Obtained cooling factor: ~200%
 Transmission efficiency: 32%
 But is matching necessary?!!

Progress on new ideas described:

H₂-Pressurized RF Cavities Continuous Absorber for Emittance Exchange Helical Cooling Channel Parametric-resonance Ionization Cooling Reverse Emittance Exchange RF capture, phase rotation, cooling in HP RF Cavities Bunch coalescing Z-dependent HCC MANX 6d Cooling Demo

(For other paths to LEMCs, see
THPMS090 A Complete Scheme of Ionization Cooling for a Muon Collider, - Palmer et al., and
THPMS082 Muon Acceleration to 750 GeV in the Fermilab Tevatron Tunnel for a 1.5 TeV mu+ mu- Collider - Summers et al.)

Muons, Inc. Muon Collider use of 8 GeV SC Linac

Instead of a 23 GeV neutrino decay racetrack, we need a 23 GeV Coalescing Ring. Coalescing done in 50 turns (~1.5% of muons lost by decay). 10 batches of $10x1.6 \ 10^{10}$ muons/bunch become 10 bunches of $1.6x10^{11}$ /bunch. Plus and minus muons are coalesced simultaneously. Then 10 bunches of each sign get injected into the RLA (Recirculating Linear Accelerator).

5 TeV ~ SSC energy reach

- ~5 X 2.5 km footprint
- Affordable LC length (half of baseline 500 GeV ILC), includes ILC people, ideas
- More efficient use of RF: recirculation and both signs
- High L from small emittance!
- 1/10 fewer muons thanoriginally imagined:a) easier p driver, targetryb) less detector backgroundc) less site boundary radiation

Muon Collider Emittances and Luminosities

• After:	ε _N tr	ε _N long.
– Precooling	20,000 µm	10,000 µm
– Basic HCC 6D	200 µm	100 µm
 Parametric-resonance IC 	25 µm	100 µm
 Reverse Emittance Exchange 	2 µm	2 cm

At 2.5 TeV on 2.5 TeV

$$L_{peak} = \frac{N_1 n \,\Delta v}{\beta^* r_{\mu}} f_0 \gamma = 10^{35} \,/ \,cm^2 - s$$

20 Hz Operation:

 $Power = (26 \times 10^9)(6.6 \times 10^{13})(1.6 \times 10^{-19}) = 0.3MW$

100 μ m 100 μ m 2 cm $\gamma \approx 2.5 \times 10^4$ n = 10 $f_0 = 50kHz$ $N_1 = 10^{11}\mu^ \Delta v = 0.06$ $\beta^* = 0.5 cm$ $\sigma_z = 3mm$ $\Delta \gamma / \gamma = 3 \times 10^{-4}$ $\tau_\mu \approx 50 ms \Rightarrow 2500 turns / \tau_\mu$

 $0.3\,\mu^{\pm}/p$

Rol - 6/26/2007

PAC07

 $\langle L \rangle \approx 4.3 \times 10^{34} / cm^2 - s$

Muons, Inc. Benefits of low emittance approach

Lower emittance allows lower muon current for a given luminosity.

This diminishes several problems:

- radiation levels due to the high energy neutrinos from muon beams circulating and decaying in the collider that interact in the earth near the site boundary;
- electrons from the same decays that cause background in the experimental detectors and heating of the cryogenic magnets;
- difficulty in creating a proton driver that can produce enough protons to create the muons;
- proton target heat deposition and radiation levels;
- heating of the ionization cooling energy absorber; and
- beam loading and wake field effects in the accelerating RF cavities.

Smaller emittance also:

- allows smaller, higher-frequency RF cavities with higher gradient for acceleration;
- makes beam transport easier; and
- allows stronger focusing at the interaction point since that is limited by the beam extension in the quadrupole magnets of the low beta insertion.

See the LEMC Workshop web page. And please come to the next workshop in February, 2008!

Rol - 6/26/2007

Low Emittance Muon Collider Next Steps: we are getting close!

- A detailed plan for at least one complete cooling scheme with end-to-end simulations of a 1.5 TeV com MC,
- Advances in new technologies; e.g. an MTA beamline for HPRF tests, HTS for deep cooling, HCC magnet design
- And a really good 6D cooling demonstration experiment proposed to Fermilab

High-Energy High-Luminosity Muon Colliders

- Are precision lepton machines at the energy frontier
- Are possible and affordable with new inventions and new technology
- Can take advantage of ILC advances
- Can be achieved in physics-motivated stages
- Require more effort from DPB and DPF communities
 Please join in!