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Muon accelerators in a neutrino factory
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Muon accelerators in a neutrino factory (1)
a whole complex

• Neutrino Factory: 20 to 50 GeV
muon beam.
– c.f. Muon Collider: a few TeV muon

beam.

• Accelerators are the most costly
part of the machine complex.

• Proposals
– Feasibility study I and II
– European neutrino factory complex
– Neutrino factory in Japan
– Study 2-A
– International Scoping Study (ISS)

neutrino factory complex
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Muon accelerators in a neutrino factory (2)
requirements of muon accelerator

• Quick acceleration
– Short lifetime of 2.2 µs.
– In particular, when γ (Lorentz factor) is small.

• Large acceptance
– Muon is a tertiary particle.
– Muon emittance is a few tens of thousand π mm mrad.
–       e.g. 30,000 π mm mrad (or 30 π mm)

• Cost consideration
– Accelerators are the most costly part of a neutrino factory.
– In particular, efficient use of rf system is essential.
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Muon accelerators in a neutrino factory (3)
choice of main accelerator

• Feasibility Study II
– Use of linac several times -- re-circulating Linac (RLA).

• Study 2-A
– Nonscaling FFAG from 5 GeV to the top energy.
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Muon accelerators in a neutrino factory (4)
why FFAG?

• Number of turns (or arcs) in RLA is limited, ~ 5.
– We have to use a different arc for each turn.
– Design of switchyard (split/combine at the end of arc) is difficult

because muon beam size is huge.

vs.

• FFAG can have more numbers of turns in a single arc.
– No switchyard is necessary.
– Requirement of rf voltage reduces. It is a cost effective option.
– Lorentz factor γ is already high when a muon is injected to FFAG.
– A knob which compromises between cost and muon yield.
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Nonscaling FFAG
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Nonscaling FFAG (1)
FFAG in one word

• FFAG  is a Fixed Field Alternating
Gradient accelerator.
– It separates the guiding field from the

acceleration process.
– Quick acceleration is possible. The rate

only depends on voltage.

• Nonscaling FFAG looks as a “storage
ring”.
– Lattice with ordinary dipoles and

quadrupoles.
– Dispersion function is small enough to give

large momentum acceptance.
– Orbit excursion from injection to extraction

is small.

lattice functions of
10 to 20 MeV
electron model



10

Nonscaling FFAG (2)
tune excursion due to natural chromaticity

• Orbit excursion can be small by
tiny dispersion function.

• Tune excursion is, however,
large because of no chromaticity
correction.

• Crossing of many integer and
half-integer tune values.
– Is it harmful?

Tune excursion from
10 to 20 GeV/c muon
ring.
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Nonscaling FFAG (3)
 nonscaling vs. scaling

• Why not chromaticity correction?
– FFAG with full chromaticity correction is called a scaling FFAG.
– The original type of FFAG invented in 1950’s.

• Nonscaling FFAG with sextupole for partial correction does
not give enough acceptance for a muon beam.

Nonlinear field profile
cancel chromaticity.

radial sector model (from K. Symon,
“MURA DAYS”, PAC03)
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Nonscaling FFAG (4)
rf acceleration

• No time to modulate rf frequency.
– Use fixed frequency (FFFFAG !).

• Cannot be isochronous, but
almost isochronous.

• Inject a beam near a rf crest and
finish acceleration before too
much phase slip accumulated.
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Beam dynamics issues

• Transverse tune excursion
• ToF dependence on transverse amplitude
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Transverse tune excursion (1)
excursion of cell tune

• Total tune of integers and half-
integers are crossed.
– If not much errors, they should not

be any problem.

• Cell tune is between 0 and 0.5.

• Cell tune of 1/3 and 1/4 are
crossed.
– If not much nonlinearities, they

should not be any problem.

cell tune

total tune = 84 x cell tune
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Transverse tune excursion (2)
orbit distortion

• Orbit distortion occurs
due to alignment
errors.

• But it shows no
structure which
depends on total tune.

• Orbit distortion is
caused by random
dipole kicks. Integer
resonance is not
correct physics to
apply in this case.

V. orbit distortion
H

. orbit distortion
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Transverse tune excursion (3)
optics distortion

• Optics distortion occurs
due to gradient errors.

• But it shows no structure
which depends on total
tune.

• Optics distortion is caused
by random quadrupole
kicks. Half integer
resonance is not correct
physics to apply in this
case, either.

H
.
# distortion
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Transverse tune excursion (4)
emittance evolution

• Evolution of emittance ellipse normalized by lattice #
without taking into account of errors.

• Evolution of emittance ellipse normalized by lattice #
with taking into account of errors.

• No emittance growth, but beam size growth due to
tumbling.

0th                     4th                     8th                    12th                    16th turn

0th                     4th                     8th                    12th                    16th turn
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Transverse tune excursion (5)
summary

• Resonance is not correct physics in a nonscaling muon
FFAG. Random dipole and quadrupole kicks introduce
continuous orbit and optics distortion.

• In 10 to 20 GeV muon ring,
– 0.050 mm alignment errors: 7 mm OD (max.)
– 0.1% gradient errors: 10% beam size growth.

• Nonlinearities exist due to kinematic terms and fringe
fields.

• Tune excursion is tolerable.
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ToF dependence on transverse amplitude (1)

• Time of flight is a function of transverse amplitude as well
as momentum.

• Large amplitude particles have too much phase slip to be
accelerated to the maximum energy.
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ToF dependence on transverse amplitude (2)

• As a whole beam, longitudinal emittance blows up and
momentum spread increases.

• Chromaticity correction cures the problem (S. Berg, Nucl.
Instrum. Methods, 2006), but it reduces aperture.
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ToF dependence on transverse amplitude (3)

• Either increase voltage and finish acceleration before
building up phase slip,

• Or introduce higher harmonic rf and make an rf crest flatter
mitigates blow-up.

• In a cascade of FFAGs, effects are enhanced.
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ToF dependence on transverse amplitude (4)
• Re-circulating Linear Accelerator (RLA) has a knob, m56 [m],

in each arc.

• Together with off crest rf phase, synchrotron oscillations mix
ToF dependence on amplitude.
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ToF dependence on transverse amplitude (5)
summary

• Time of flight depends on transverse amplitude.
– It is not negligible because of large muon emittance.

• That can be mitigated with either higher voltage or higher
harmonic rf components.

• The issue becomes more serious in a cascade of FFAGs.

• Re-circulating Linear Accelerator (RLA) and Linac have the
same problem. However, RLA can mix the unwanted
phase accumulation by synchrotron oscillations.
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Development of scaling FFAG
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Development of scaling FFAG (1)

PoP FFAG
(2000): The
world’s first
proton FFAG
with MA rf
cavity.

150MeV FFAG
(2005):
A prototype for
medical use.

PRISM FFAG (present):
Muon phase rotator to
reduce momentum
spread.

ADSR FFAG (present):
Combined with a reactor, it
demonstrates Accelerator
Driven System.
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Development of scaling FFAG (2)
150 MeV FFAG at KEK

• A prototype of the medical use.
• 100 Hz operation.

– Voltage of 6 kV.
– Frequency from 1.5 to 4.6 MHz.

• 90% extraction efficiency.

100 Hz operation beam extraction
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Development of scaling FFAG (3)
as a muon accelerator

• 5 to 10 GeV spiral FFAG for muon acceleration.
• Acceleration with Harmonic Number Jump

– A bunch is captured in a bucket with different harmonic
number turn by turn.

• Continuous operation with constant rf frequency is
possible (A. G. Ruggiero, Phys. Rev. ST 100101, 2006).

• Energy gain has to be adjusted in radial direction.
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From Study 2-A to ISS and beyond
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From Study 2-A to ISS and beyond (1)
outcomes of the ISS studies

• Study 2-A may rely too much on FFAG.

• Integer and half-integer crossing seems to be no problem.

• Longitudinal emittance blown up by time of flight variation
in a cascade of FFAGs is still an issue.

• On the other hand, RLA is in a better situation because of
additional knob, m56 in the arc.
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From Study 2-A to ISS and beyond (2)
recommendation by ISS

• No decision was made in the ISS on the transition energy
among different structures.

• However, it recommends higher injection energy to a
FFAG, keeping a second FFAG as an energy upgrade
option to 50 GeV. RLA becomes bigger

Only one FFAG to 25 GeV
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From Study 2-A to ISS and beyond (3)
EMMA

• Daresbury Laboratory hosts construction of an
electron model of a nonscaling FFAG.
– Acceleration outside buckets
– Integer tune crossing
– Large aperture

Energy: 10 to 20 MeV
Acceptance: 3,000 π mm mrad
Circumference: 16 m
# of cell: 42
# of turn: 12
rf voltage: ~30 kV/cell
rf frequency: 1.3 GHz 

(a talk by R. Edgecock) 
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Summary
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• Nonscaling FFAG has been studied as a strong candidate
for the main accelerator of a muon beam.
– Some issues still remain.

• Hardware development of a scaling FFAG goes on and
experimental demonstration of a nonscaling FFAG has just
started.




