

A 100 mA SRF Injector Cryomodule for the Cornell ERL X-ray Light Source

Injector Beam Requirements and SRF Answers

- E = 5-15 MeV
- beam power ≤ 0.5 MW
- max current 0.1 A
- q = 0.01 0.4 nC
- $\varepsilon_n = 0.1-1 \text{ mm-mrad}$

- five SRF 2-cell cavities
- symmetric beam line
 - twin coax input couplers
 - round beam line absorbers
- beam line HOM loads for aggressive HOM damping
- cold cavity fine-alignment

Design Philosophy

- Use the same cryomodule concept in ERL injector and main linac.
- Cryomodule concept based on the well established TTF cryomodule
 - Cavities supported by large diameter Helium-gas return pipe (HGRP)
- Significant modifications for ERL specific needs:
 - high cryo loads at 1.8K (cavity), 5K and 80K (HOM power, input couplers), high Q₀, HOM loads, ...
- Continue simplification and cost reduction

Design Modifications and Innovations

- Changes compared to TTF cryomodule:
 - Increase diameter of 2-phase 2K He pipe for CW cavity operation
 - Direct gas cooling of chosen 5K and 80K intercept points with He-gas flow through small heat exchangers
 - HOM absorbers between cavities.
 - 3 layers of magnetic shielding for high Q_o
 - No 5K shield, only a 5K cooling manifold.
 - Tuner stepper easily replaceable while string is in cryomodule
 - New end-cap and feed-cap concept with reduced length
 - In-situ bake for input couplers, no further atmosphere exposure, *no pre-conditioning*

0

ightarrow

Fixed Cavity and HOM Load Supports

Precision fixed surfaces between the
 beamline components and the
 HGRP ⇒ easy "self" alignment

Cavity-subunits can be fine-aligned while cavities are at 2K (if required)

Matthias Liepe

June 28, 2007

Along the Way: The Test Cryomodule

• *Single* cavity test version of full injector module

- Same concept,...
- ... just shorter

- Vacuum vessel can be used later as an ERL main linac cavity test cryomodule
- Assembly in progress

The Beam Line Components: Design, Fabrication and Test

Superconducting 1.3 GHz 2-cell Cavities

- Brazed conflat flanges
- Twin-input coupler
- 6 cavities fabricated and tested in house
- Only BCP, no 800C
- All cavities meet 15 MV/m spec

Paper WEPMS007

Coaxial Input Couplers

- Design for high cw power > 50 kW
- 2 prototypes tested up to 50 kW cw, 80 kW pulsed
- 10 couplers

 ordered with
 further improved
 cooling

June 28, 2007

Beam Line HOM Loads

Power per load	26 W (200 W max)	Flange to Cavity
HOM frequency range	1.4 – 100 GHz	
Operating temperature	80 K	Flange to
Coolant	He Gas	Cavity
RF absorbing tiles	TT2, Co2Z, Ceralloy	RF Absorbing Shielded (GHe)
		Tiles

- 2 proto-types fab'ed by Cornell
- 6 production loads fab'ed by industry

Matthias Liepe

June

Frequency Tuners

- Modification of the INFN blade tuner
- Added piezos for microphonics compensation (R&D)
- Stepper motor easily replaceable while cavity string is in cryomodule
- 6 units fabricated

Finished Beam Line for Test Module

The Test Cryomodule: Assembly

Test Cryomodule Assembly

Helium-gas return pipe; serves also as main – beam line support structure

Mounting of Beam Line to HGRP

Beam Line supported by HGRP

120C Cavity and Coupler Bake (cold part)

In-situ bake for cold and warm couplers, no further atmosphere exposure, no preconditioning

Add Magnetic Shield I, Frequency Tuner

Cavity frequency tuner with magnetic shield below blades

Add 5K and 80K Cryogenic Pipes, Wire Position Monitor, Magnetic Shield II, Cables, ...

5K and 80K supply / return pipes

¹/₄" cryogen distribution⁻ tubes

Second magnetic -shield around cavity

Wire position monitor block mounted to cavity

Cryomodule Instrumentation

- 90 sensors (T, He-level, ...)
- 5 heaters (2K, 5K, 80K)
- <u>In-situ coupler bake</u>
- 22 RF cables

Matthias Liepe

June 28, 2007

Add 80K Thermal Shield

Tuner Motor Access Port in 80K Shield

Tuner stepper easily replaceable while string is in cryomodule

80K thermal shield

Gate Valve inside of Module with outside Drive

Add Magnetic Shield III

Add Superinsulation

Align Cold Mass and Vacuum Vessel

Rail system to slide cold-mass into vacuum vessel

Slide Cold-Mass into Vacuum Vessel

Insight from the Assembly

- First assembly revealed no significant design problems
- Fast, easy assembly (once we had all parts...)
- Fixed alignment concept works well
- Full 3D modeling (including assembly drawings) extremely helpful
- Tight tolerances are cost drivers \Rightarrow spec carefully!
- Several small improvements have been applied to the full injector module design to reduce cost further

Getting Ready for Test

 135 kW cw power klystron (e2v)

 Cold-box with 2K, 5K, 80K heat exchanger

50 W @ 1.8K pumping skid/ refrigerator

•

- Test-cryomodule test 7/07
- Full injector cryomodule assembly 8/07 1/08 (all cryo-vessel parts have been ordered)
- Beam test in 2008

Cornell ERL SRF Team

H. Padamsee
M. Liepe
S. Belomestnykh
E. Chojnacki
J. Sears
V. Medjidzade
D. Meidlinger
V. Veshcherevich
V. Shemelin

- P. Quigley
- D. Heath
- P. Barnes
- B. Clasby
- J. Kaufman
- A. Windsor
- R. Roy
- R. Ehrlich
- E. Smith