e⁺ e⁻ Factories

M. Sullivan

Presented at the Particle Accelerator Conference June 25-29, 2007 in Albuquerque, New Mexico

Outline

- Factory Running
- KEKB
- PEP-II
- DAFNE
- CESR-c
- **BEPCII**
- Summary

Factory Running

- High luminosity is the "other physics discovery channel"
- The B factories, after having measured CP violation in the B meson system, are now looking for very rare decay channels that can have a signature for physics beyond the Standard Model
- All factories are looking for deviations from the Standard Model or are making precision measurements
- These kinds of searches need as much data as possible. The more data the rarer the decay channel that can be investigated.

Factory Running (2)

- There are five e⁺e⁻ factories
- The two asymmetric-energy B factories, KEKB and PEP-II – Looking at B meson decays
- CESR-c A pioneering B factory that has moved down to the Tau-charm energy region – looking at D meson decays
- BEPC II A new factory in the Tau-charm region as well

KEKB

- KEKB has the highest luminosity of any e⁺e⁻ collider (1.7×10³⁴ cm⁻² s⁻¹)
- Ring circumference 3000 m
- BELLE, the detector, has the largest data set of B meson decays
- KEKB has a ±11 mrad crossing angle collision
- They are commissioning crabbing cavities to convert the collision into a head-on type
- Hope for a factor of two increase in luminosity
- They also have a proposal to upgrade KEKB to a 4×10³⁵ cm⁻² s⁻¹ luminosity machine

PAC07

KEKB storage ring layout

KEKB Parameters				
	Design		Achieved	
	e ⁻	e +	e ⁻	<u>e</u> +
•Beam energies (GeV)	8.0	3.5	$\mathbf{E}_{cm} =$	10.80
•Currents (A)	1.1	2.6	1.34	1.66
•Number of bunches	5000		1388	
•Bunch spacing (m)	1.2		2.4	
•Bunch currents (mA)	0.22	0.52	0.97	1.20
•Beam stored energy (kJ)	90	92	110	59
•Luminosity (×10 ³³ /cm ² /sec)	10.0		17.12	
•Integrated Luminosity (fb ⁻¹)			7	10
•Data set (B mesons)			1.4	x10 ⁹

KEKB RF section

HER Crab Cavity

LER Crab cavity

Selected KEKB Talks and Posters

– Talks

- MOZAKI02
- TUODAB01
- THOBKI01 – Posters
 - TUPAN041
- TUPAN041
 TUPAN042
- **TUPAN045**
- **THPAN037**

٠

•

•

THPAN041 Optics Correction Using Orbit Displacement at Sextupole Magnet

KEKB

THPAN042 Recent Progress of Optics Correction at KEKB

Vertical Bump in KEKB

Recent Progress of KEKB

FRPMN035 Crabbing Angle Measurement by Streak Camera at KEKB

Beam Operation with Crab Cavities at KEKB

Beam-Beam Effects Observed at KEKB

- FRPMN038 Simulation of Synchro-betatron Sideband due to Electron Cloud Instability
 - FRPMN041 Study on the Longitudinal Impedance of BPM for KEKB and Super KEKB
 - FRPMN042 Continued Study on the Photoelectron and Secondary Electron Yield of TiN Coating and NEG (Ti-Zr-V) Coating at the KEKB Positron Ring

Compensation of the Crossing Angle with Crab Cavities at KEKB

Development of a Movable Collimator with Low Beam Impedence

Calibration Method for Synchrotron Radiation Monitor by Using a

Variations of Betatron Tune Spectrum due to Electron Cloud Observed in

PEP-II

- Second highest factory for luminosity (1.2×10³⁴ cm⁻² s⁻¹) 4x over design
- Highest beam currents and largest amount of stored positrons
- Ring circumference 2200 m
- Upgrade plans include lower emittance for both rings
- Also plan to raise beam currents to 2.2 A for the HER and 4 A for the LER
- Hope to get to 2×10³⁴ cm⁻² s⁻¹
- HOM power

PEP-II Rings

PEP-II Parameters				
	Design		Achieved	
	e ⁻	e ⁺	e ⁻	e +
•Beam energies (GeV)	9.0	3.1	$\mathbf{E}_{cm} =$	10.80
•Currents (A)	0.75	2.14	1.85	2.99
•Number of bunches	1658		1722	
•Bunch spacing (m)	1.26		1.26	
•Bunch currents (mA)	0.45	1.29	1.07	1.73
•Beam stored energy (kJ)	49	49	118	68
•Luminosity (×10 ³³ /cm ² /sec)	3.0		12.07	
•Integrated luminosity (fb ⁻¹)			45	0
•Data set (B mesons)			9 ×	10 ⁸

PEP-II Tunnel

BaBar Detector

Section through BaBar & near IR For Information only, do not scale

This Revision⊢ 4/23/01

HOM power

Selected PEP-II Talks and Posters

	– Talks	
•	MOZAKI03	PEP-II Operation over a Luminosity of 10 ³⁴
•	MOOAKI02 – Posters	Overall HOM Measurement at High Beam currents in the PEP-II SLAC B-Factory
•	MOPAS058	Analysis of the Longitudinal Low-order Mode Beam Dynamics in PEP-II Rings at High Current
•	MOPAS063	Longitudinal Low-order Mode Beam Dynamics at PEP-II: Models, Stability, and Limits
•	TUPAS065	How to Reach Much High Beam-Beam Parameters in PEP-II?
•	TUPAS068	A Beam Instability in the PEP-II HER Induced by Discharges in the Vacuum System
•	TUPAS069	Commissioning the 90 Degree Lattice for the PEP-II High Energy Ring
•	TUPAS070	Optimization of Chromatic Optics Near the Half Integer in PEP-II
•	WEPMS047	Selecting RF Amplifiers for Impedance Controlled LLRF Systems – Nonlinear Effects and System Implications
•	THPAS056	Perturbation of a Closed Orbit in Coupled Lattice
•	THPAS057	Significant Lifetime and Background Improvements in PEP-II by Reducing the 3 rd Order Chromaticity in LER with Orbit Bumps
•	THPAS058	Lowering the Vertical Emittance of the LER Ring of PEP-II
•	THPAS068	Calculating IP Tuning Knobs for the PEP-II High Energy Ring Using Singular Value Decomposition Response Matrices and an Adapted Moore Penrose Method
•	THPAS070	Validation of PEP-II Resonantly Excited Turn-by-Turn BPM Data
•	FRPMS066	Commissioning the Fast Luminosity Dither for PEP-II
•	FRPMS075	Modeling of the Sparks in Q2-bellows of the PEP-II SLAC B-Factory
•	FRPMS076	A New Q2-Bellows Absorber for the PEP-II SLAC B-Factory
•	FRPMS077	High Current Effects in the PEP-II SLAC B-Factory

DAFNE

- The only Φ factory studying K meson decays
- K meson decay rates contributed to the prediction of the mass of the charmed quark – before it was discovered
- Ring circumference 100 m
- Upgrade plans include an implementation of a "crabbed waist" collision similar to the ILC and proposed for a new Super B factory design

Accelerator Layout

DAFNE Parameters			
	Design	Achieved	
	e ⁻ and e ⁺	e ⁻	e ⁺
•Beam energies (GeV)	0.51	E _{cm} =1	l .02
•Currents (A)	5.2	1.5	1.1
 Number of bunches 	120	111	
•Bunch spacing (m)	0.8	0.8	
•Bunch currents (mA)	43	13.5	10.
•Beam stored energy (kJ)	0.85	0.24	0.18
•Luminosity (×10 ³² /cm ² /sec)	5.3	1.6	
•Integrated Luminosity (fb ⁻¹)		0.8	

KLOE detector

Selected DAFNE Talks and Posters

- Talks
- MOOBKI02 DAPHNE Phi-Factory Upgrade for Siddharta Run
 - Posters
- TUPAN031 Touschek Background and Beam Lifetime Studies for the DAFNE Upgrade
- TUPAN033 DAFNE Setup and Performances During the Second FINUDA Run
- TUPAN035 DAPHNE Wiggler Modification
- TUPAN036 DAPHNE Upgrade: A New Magnetic and Mechanical Layout
- TUPAN037 Beam-Beam Simulation for Particle Factories with Crabbed Waist Scheme
- FRPMN028 Design and E.M. Analysis of the New DAFNE Interaction Region
- FRPMN029 Dynamic Aperture Optimization for the DAPHNE
 Upgrade

CESR-c

- Relative newcomer (running for 3 yrs)
- Ring circumference 768 m
- Has achieved half of design luminosity
- Uses 12 large super-conducting wiggler magnets to improve damping times at the Tau-charm energy region
- These damping wigglers are being studied by the ILC

CESR-c Parameters			
	Design	Achi	eved
	e ⁻ and e ⁺	e⁻ a	<u>nd e</u> +
•Beam energies (GeV)	1.5-2.5	E _{cm} =	3-5
•Currents (A)	0.23	0.06	0.07
 Number of bunches 	45	24	L I
•Bunch spacing (m)	17	17	
•Bunch currents (mA)	3-5	2.5	2.9
•Beam stored energy (kJ)	1-1.5	0.26	0.30
•Luminosity (×10 ³³ /cm ² /sec)	0.15-0.5	0.07	
•Integrated Luminosity (fb ⁻¹)	7	(.7

Selected CESR-c Talks and Posters

- Talks
- MOZBKI02 CESR-c: A Wiggler-dominated Collider
- MOOAKI01 Plans for Utilizing the Cornell Electron Storage Ring as a Test Accelerator for ILC Damping Ring Research and Development
 - Posters
- TUPAS056 Compensation Strategy for Optical Distortions Arising from the Beam-Beam Interaction at CESR
- THPAN087 Study of Turn-by-turn Vertical Beam Dynamics at Low and High Energy CESR Operation
- FRPMS047 Design and Implementation of an Electron and Positron Multi-bunchTurn-by-Turn Vertical Beam Profile Monitor in CESR

BEPCII

- Latest factory just coming online
- Ring circumference 238 m
- They have stored 500 mA e- and 610 mA of e+
- Collisions have been seen
- Interaction region has to accommodate colliding beams as well as an electron beam that travels out through the positron beam line when in light source mode

BEPCII Layout 1W3 B Ν 1B31W2 SC cavities 1W1 SC IR magnets BESIII e+ inj. point e- inj. point IR

BEPCII Parameters			
	Design	Achieved	
	e ⁻ and e ⁺	e [–] and e ⁺	
•Beam energies (GeV)	1.89	E _{cm} =3.78	
•Currents (A)	0.91	0.15 0.2	
 Number of bunches 	93	~100	
•Bunch spacing (m)	2.4	2.4	
•Bunch currents (mA)	10	1.5 2.0	
•Beam stored energy (kJ)	0.3	0.05 0.06	
•Luminosity (×10 ³³ /cm ² /sec)	1		
•Integrated Luminosity (fb ⁻¹)	Commissioning		

The **BESIII** Detector SC magnet Magnet yoke TOF Be beam pipe **MDC CsI calorimeter**

Selected BEPC II Talks and Posters

- Talks
- MOZBKI02 BEPC II: Status and Early Commissioning
 - Posters
- TUPAN068 The Progress of the BEPCII Injection Kicker Systems
- **TUPAN069** Beam Trajectory Correction for BEPCII Linac
- TUPAN071 Commissioning and the First Stage Operation of BEPC-II
- TUPAN072 The Optics Measurement and Correction of BEPCII Storage Ring
- **TUPAN074 BEPCII Interaction Region**
- THPAN050 Studies of Two-bunch Acceleration for BEPCII Injector Linac

Summary

- e+e- Factories strive for higher luminosity by shrinking the collision spot size, shortening the bunch length, increasing the beam currents and by increasing the number of bunches
- These efforts have led to many insights about high-current machines: Ion instabilities, ECI, fast bunch-by-bunch feedback, HOM power, SR power, crossing angle collisions, ring impedances ...

Summary (cont.)

 As the factories already running push these parameters farther and as new factories come online with even higher luminosity goals we will continue to learn more about running and operating these demanding high-current accelerators