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Abstract

The influence of random perturbations of high intensity
accelerator elements on the beam losses is considered. This
influence is analyzed with the help of the Extreme Value
Theory (EVT) to allow loss estimates for a very low frac-
tion of the beam. Many fields of modern science and en-
gineering have to deal with events which are rare but have
significant consequences. EVT is considered to provide the
basis for the statistical modeling of such extreme events
(extreme variations of financial market for insurance com-
panies or extreme wind speed for electric companies).
To illustrate the application of this theory to beam losses es-
timates, the SPIRAL2 driver is used. This 5 mA deuteron
accelerator is simulated from the output of the source to the
target with a high resolution PIC modelisations (up to 1.3
million macro-particles) by using realistic external fields.

INTRODUCTION

Once the reference design for the accelerator with per-
fect elements respects the requirements, it is necessary to
evaluate the effects of imperfect elements. This evaluation
permits to define tolerances for the construction of the linac
and to test the robustness of the achieved architecture. To
correct such errors, a system based on correctors and di-
agnostics has to be designed taking into account that the
diagnostics are also imperfect (misalignments, measure-
ment,...).
Several authors studied the effects of imperfect ion linacs
on the beam [1, 2, 3, 4, 5, 6]. In the references [2, 3], it is
shown how manufacturing errors modeled with multipoles
components could induce an emittance growth but the ef-
fect of non linear space charge force is not treated. The
halo induced by these effects is then underestimated and
the loss prediction becomes distorted. The approach in [1]
is helpful if the Coulomb force is negligible but is inaccu-
rate for high power linac at low energy. To tend to ”realis-
tic” simulation of a high intensity linac, it is necessary to
perfom start to end transport to be capable to estimate the
impact of halo produced at low energy on the beam losses
at the high energy part of the accelerator. The references
[4, 5, 6] detail start to end simulations to take into account
this point. In these references, the main mechanisms to
produce the beam halo are the space charge and/or the non
linear external fields. These studies used macroparticles to
estimate the beam distribution and to record the losses at

the beam pipe. The discrete recorded losses at different
locations in the linac allow to build Cumulative Density
Function (CDF) to provide a probability to deposite more
than a certain fraction of the beam. But the discrete form
of this CDF induces that the probability to loose more than
the more extreme recorded loss becomes null. We are not
capable then to predict very extreme events.
The Extreme Value Theory provides a firm theoretical
foundation to perform such a goal (Fisher and Tipett (1928)
and Gnedenko (1943)). Combining this theory with the
bootstrap technique, we propose in this paper, after a short
introduction to EVT, to detail a procedure to compute aver-
age probability of occurence of extreme events such a very
low beam loss (10−5) including a confidence interval (error
bar) associated to this evaluation. To illustrate the method,
the SPIRAL2 linac is used.

EXTREME VALUE THEORY

Some of the most frequent questions concerning risk
management in several fields involve extreme quantile esti-
mation. This corresponds to the determination of the value
a given variable exceeds with a given (low) probability. In
many fields of modern science, engineering and insurance,
extreme value theory is well established [7, 8, 9]. When
modelling the maxima of a random variable, this theory
plays the same fundamental role as the central limit theo-
rem plays when modelling sums of random variables. In
both cases, the theory tells us what the limiting distribu-
tions are.
Generally there are two related ways of identifying ex-
tremes in data. Let us consider a random variable which
may represent daily losses. The first approach then consid-
ers the maximum the variable takes in successive sequences
or periods, for instance months or years. These selected ob-
servations constitute the extreme events, also called block
maxima. The second approach focuses on the realizations
which exceed a given (high) threshold [9]. It is called Peaks
Over Threshold (POT). This two ways to treate data are
complementary and can be compared but we will only use
the first one in this manuscript.

Distribution of Maxima (GEV)

The limit law of the block maxima, which we denote by
Mn, with n the size of the subsample (block), is given by
the following theorem:
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Theorem 1 (Fisher and Tipett (1928), Gnedenko (1943))
Let (Xn) be a sequence of random variables. If there
exists two series of real constants Cn > 0 ∀ n and dn and
some non-degenerate distribution function H such that

Mn−dn

cn
−→ H ,

then H belongs to one of the three standart extreme value
distributions: Fréchet, Weibull or Gumbel.

Jenkison and von Mises suggested to represent these three
distributions with the following representation:

Hξσμ (p) = exp

(
−

(
1 + ξ

p − μ

σ

)− 1
ξ

)
(1)

with μ, the location parameter, σ, the scale parameter and
ξ a form parameter. When ξ → 0, the GEV tends to
the Gumbel distribution.This general representation is very
useful as at the beginning of the treatement, we don’t know
in advance the limiting distribution type of the sample.

Bootstrap technique

If we admit that large-sample theory holds for our esti-
mates, we can construct confidence intervals for each fit-
ted parameters of the GEV or a particular return level.The
bootstrap technique is a very simple and efficient technique
in order to build such confidence intervals. It is a type of
Monte Carlo method applied based on observed data [ 10].
The fundamental idea of this model-based sampling the-
ory approach to statistical inference is that the data arise
as a sample from some conceptual probability function, f .
Uncertainties of our inferences can be measured if we can
estimate f . The most fundamental idea of the bootstrap
method is that we compute measures of our inference un-
certainty from that estimated sampling distribution of f .

In practical application, the bootstrap means using a re-
sampling with replacement from the actual data X to gen-
erate B bootstrap samples X ∗. Often, the data or sample
consist of n independent units and it then suffices to take
a simple random sample of size n; with replacement, from
the n units of data, to get one bootstrap sample. The set
of B bootstrap samples is a proxy for a set of B indepen-
dent real samples from f (in reality we have only one ac-
tual sample of data). Properties expected from the repli-
cate real sample are inferred from the bootstrap samples
by analysing each bootstrap sample exactly as we first ana-
lyzed the real data sample. From the set of results of sample
size B, we measure our inference uncertainties (variance).
The bootstrap can work well for a very large sample sizes
(n), but may not be reliable for small n (let us say 5, 10
or 20), regardless of how many bootstrap samples, B, are
used.

BEAM LOSSES DATA BASED ON LARGE
SCALED COMPUTATIONS

Usually, EVT is used to analyse real events (measure-
ments) but, to study the construction tolerances of a high
power linac, it would correspond to the analysis of a huge
number of similar built linacs. For obvious reasons, it
is necessary to produce the data set with virtual acceler-
ators. One limit of this strategy is the resolution which
can be achieved with the simulation tools. Differently,
it has to be shown that the relevant physics is present in
the codes. We proposed here to use the present state of
art in our laboratory to simulate this set of virtual linacs
with imperfections. To illustrate the application of EVT
to beam losses estimates, the SPIRAL2 driver is used.
This design has been presented at the EPAC 2004 con-
ference [11]. The transverse rms normalized emittance at
the input is 0.2 π.mm.mrad. The beam current is 5 mA.
A deuteron beam is considered to estimate the most criti-
cal beam losses. Multiparticle simulations are performed
from the Low Energy Beam Transport (LEBT) line to the
target through the radio frequency quadrupole (RFQ), the
Medium Energy Beam Transport line (MEBT), the super-
conducting linac (SCL) and the High Energy Beam Trans-
port (HEBT) line. The transport of the beam through the
RFQ is computed with the code TOUTATIS [12]. The
rest of the linac is simulated with the TraceWin/PARTRAN
package[13]. To manage the necessary huge number
of runs for the Monte Carlo study, we implemented in
Tracewin a software package that permits to pilot a het-
erogenous collection of PCs [13]. The package is based
on a client/server architecture to distribute the different in-
dependent runs. This is a multiparameter scheme and not
a paralell scheme which is less optimal as each run can
be performed by a single PC (less communication between
each node). The figure 1 shows the beam density projection
per plane in the linac for the perfect structure.

Depending on the linac section, errors with different am-
plitudes have been used. For an error of amplitude A, the
value has a uniform probability to be between −A and +A.
Two types of error have to be coped for: static and dynamic.
For each, it bas been considered, for instance, cavity or
quadrupole misalignments or field and phase errors. We
implemented a correction scheme to minimize the effects
of the static errors. For example, steerers and beam posi-
tion monitors to correct the misalignement of cavities and
quadrupoles have been used. Usually, each defect is first
studied separately and is amplified until an unacceptable
threshold is reached. Second, the defaults are combined
and amplified until the threshold is reached again. The
weighting for the combination has to take into account the
relative sensitivity and the capacity to respect the induced
tolerances. The main threshold for the SPIRAL2 project is
to avoid losses in the superconducting section above 1 W
per cavity. As this threshold is exceeded without error, col-
limators in the MEBT are used to control the beam losses.
The amplitudes of errors have been chosen after iterations
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Figure 1: The deuteron density projection in the transverse plane in the SPIRAL2 linac (the black line is the aperture).

with the engineering teams and the background from pre-
vious studies on high intensity linacs [15]. For each run, a
1,300,000 macroparticle 4×σ gaussian distribution is used
at the input of the LEBT line to provide the required reso-
lution to detect beam losses lower than 1 Watt in the whole
linac. We randomly generated up to 341 runs to obtain a
sufficient size of events per element or block.

APPLICATION OF THE EXTREME
THEORY FOR THE LOSS ESTIMATE

Introduction

To model the tails of our deposited beam power in the
SPIRAL2 linac, we will apply the following method:

• first, scan the mean deposited power for each element
of the accelerator to detect the most critical compo-
nents (our block maxima).

• second, fit the data with the Generalized Extreme
Value (GEV) distribution.

• third, estimate confidence intervals for value of inter-
est with the bootstrap method.

Figure 2 shows the average losses repartition along the
structure for the 341 linacs and the corresponding dissi-
pated power. These last data allow us to select the most
critical component in a particular section. It is assumed

that elements with a high standard deviation have also a
high mean value. If we focus on the results for the SCL,
we can observe two critical elements. The first one is the
first quadrupole of the first super-conducting section and
the second one is the first cavity of the β = 0.12 section.

Figure 2: Average loss repartition along the structure. The
most critical components are pointed with red arrows.

First quadrupole of the β = 0.07 section

Figure 3 shows the recorded losses distribution at the
first quadrupole of the first super-conducting section. This
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Figure 3: Unormalized probability density function for the
losses at the first quadrupole of the first section. The de-
posited beam power (W) forms the abscissa and the number
of counts the ordinate.

represents the unnormalized probability density function
(PDF) computed with the results of all the different linacs
with 1, 300, 000 simulated macro-particles per linac. With
this number of macro-particles, one particle represents ∼
8 mW at this location of the linac. Using this unormal-
ized PDF, we can build a Cumulative Distribution Function
(CDF) which will be our reference data to fit the parameters
of the GEV function of the lost power p (see equation 1).
To build the CDF, we used the following formula:

Fn (xn
i ) =

i

n
for i = 1, ..., n (2)

which is the sample distribution function for a set of n ob-
servations, given in increasing order xn

1 ≤ ... ≤ xn
i . For

our case, n is equal to 341. The GEV fitted with these data
is plotted in the figure 4. At this location of the linac, the
requirements assume that less than 4 Watt should be de-
posited on the pipe. With the fitted GEV, we can estimate
that the probability to loose less than 4 Watt is 0.97 which
is very confortable. The fitted parameters are ξ̂ = 0.223,
σ̂ = 0.89 and μ̂ = −0.86. To see how sensible is this re-
sult in respect to the achieved statistics, we can calculate a
confidence interval at 95% with the bootstrap method. We
resampled 1000 times the recorded PDF and recomputes
the expected return power level for a probability of 0.97.
The figure 5 shows the empirical bootstrap distribution of
the return level for this probability. The confidence inter-
val at 95% is then [2.3; 5.9] Watt. This indicates that the
recorded losses are sufficiently numerous to estimate that,
with a good accuracy, we kept the beam losses at an accept-
able level. If we need to estimate probability for very high
loss level, the same procedure has to be repeated. For in-
stance, with the same set of events, we can estimate that for
an average probability of occurence of 10−4, the deposited
power is 36 Watt with a confidence interval at 95% which
is [20; 52] Watt. It indicates that more recorded losses are
required if we need to shrink the confidence interval around
this value of 36 Watt.
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Figure 4: GEV fitted with the recorded losses for the
quadrupole. The deposited beam power (W) forms the ab-
scissa and the CDF the ordinate.

Figure 5: Empirical bootstrap distribution for the return
level with a probability of 0.97. The two small red marks
indicate the ±2σ interval, the big red mark indicates the re-
turn level obtained with a direct estimate from the recorded
losses.

First cavity of the β = 0.12 section

With the same procedure, we can construct a fitted GEV
function with the recorded losses at the cavity location (fig-
ure 6). The fitted parameters are ξ̂ = 0.465, σ̂ = 0.062 and
μ̂ = −0.061. The probability to loose less than one watt
is 0.99. With the bootstrap method, we can estimate a con-
fidence interval for this probability. It is [0.44; 1.33] Watt.
The figure 7 illustrates the empirical bootstrap distribution
of the return level for this probability. The table 1 gives a
summary of the results for the most lossy quadrupole and
cavity. To give an other example of the main interest to use
EVT, we are capable to estimate that the average probabil-
ity to loose more than 10 Watt in this cavity is 8.10−5.

Table 1: Beam loss estimates (PE) and 95% bootstrap con-
fidence intervals.

CDF @ PE Lower Point Upper
bound estimate bound

Quad (W) 0.97 2.3 4 5.9
Cavity (W) 0.99 0.44 1 1.33
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Figure 6: GEV fitted with the recorded losses for the most
critical cavity. The deposited beam power (W) forms the
abscissa and the CDF the ordinate.

Figure 7: Empirical bootstrap distribution for the return
level with a probability of 0.99. The two small red marks
indicate the ±2σ interval, the big red mark indicates the re-
turn level obtained with a direct estimate from the recorded
losses.

CONCLUSIONS

This application of the Extreme Value Theory to beam
losses estimates in the SPIRAL2 linac based on large scale
Monte Carlo computations allowed us to provide low losses
probability for this linac. The probability to loose more
than one watt in a superconducting cavity predicted with
the GEV is less than 10−2. Differently, such an event will
happen on average one linac over one hundred built linacs.
The bootstrap technique has been used to estimate the pre-
cision of this prediction. A ±2σ confidence interval equal
to [0.44; 1.33] Watt has been calculated for this probability
To go further to ”realistic” estimates of the beam losses, a
more faithful modelisation of the linac is required. For in-
stance, the output beam distribution of the ECR source is
necessary to enhance the start to end modelisations and the
beam interaction with the residual gas (neutralisation) has
to be taken into account to simulate more accurately the
space charge force especially at low energy.
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