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Abstract

We report about recent advances in understanding space-
charge dependent beam loss and emittance growth driven
by nonlinear dynamics, which allow quantitative predic-
tions for a large number of turns (typically 105 or more).
In this talk we review the theoretical model of trapping by
space charge effects, simulation results and experimental
findings obtained at the CERN Proton Synchrotron and the
heavy ion synchrotron SIS18 at GSI. The impact of these
effects on the beam loss budget/beam loss control for heavy
ion beams in the SIS100 synchrotron in the FAIR project
will be presented.

INTRODUCTION
The new physics research frontiers are worldwide requiring
the use of high intensity beams provided in dedicated accel-
erator facilities. In Fig. 1 is shown a summary of the major
laboratories in which operation with high intensity beams
takes place. For each synchrotron is considered the beam
production performance in terms of the space charge detun-
ing ΔQ jointly to the turns N without major loss in which
such a beam is kept in the accelerator. Several accelera-
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Figure 1: Classification of the high intensity rings with ring
under construction marked in red.

tors (black marks) are running with high intensity for short
term storage or injection plateau, typically 104 turns: SNS
[1], AGS Booster at BNL [2] PSB at CERN [3] and SIS18
at GSI [4]. Some rings under construction as the RCS at
JPARC [5] will operate also in this regime. Already in the
short term storage of high intensity beams, space charge
poses important beam control challenges which we shortly
address in the next section. In the JPARC project the main
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ring (MR) exceeds the 104 turns storage time. The AGS at
BNL also operates in a similar condition [2], but the in-
jection and accumulation in 750 ms happens with beam
loss of 20%. After injection the beam remains stored for
1.3× 105 turns. We take the value of ∼ 104 turns as some-
what arbitrary border between short and long term storage.
Beyond ∼ 104 turns storage several synchrotron oscilla-
tions take place in the bunch and the prediction of the beam
evolution becomes more difficult, because the typical space
charge effect is coupled with the longitudinal motion. This
regime is encountered in the SIS100 synchrotron in the
FAIR project at GSI [6]. It is planned that SIS100 [7, 8]
will store bunches of U+28 ion beam for a time of the order
of a second (few 105 turns) with a tuneshift of ΔQ ∼ −0.3.
The ring nonlinearities in this long term storage of a high
intensity bunch play an important role in the beam quality
control and beam loss. Protection of cold super-conducting
parts of magnets imposes uncontrolled beam loss at the few
% level [9], which is critical for the U+28 research scenario.
In fact the large ionization cross section of a U+28 ion beam
with residual gas atoms limits the uncontrolled beam loss
to 1% [10]. A beam loss exceeding this threshold triggers
a progressive vacuum degradation due to desorption [11],
which considerably reduces the beam lifetime [12].

High Intensity Effects for Short Term Storage

The high intensity in short term storage is responsible for
several beam degradation mechanisms. For high intensity
it is meant that the space charge tuneshift is not much ex-
ceeding the ”conventional” value of ΔQ ∼ −0.25. A
first consequence of the space charge in a beam is that
any perturbation to the spatial beam profile causes an os-
cillatory 2D response of the beam as a whole, which can
be decomposed in modes [13]. When the frequency of a
mode ω = nxQx0 + nyQy0 + Δω satisfies the condition
ω = nxQx0 + nyQy0 + Δω = 0, the corresponding mode
can be unstable unstable [14]. Note that self consistent ef-
fects in the absence of synchrotron motion can reduce the
emittance blow-up for non KV-distributions [15]. A sec-
ond effect of the high intensity occurs when the force cre-
ated by the beam resonates with the frequency of particles
inside the beam itself creating parametric resonances [16]:
a classical example is given by the envelope mode of fre-
quency ω = 2Qx0+Δω which acts on particles in the beam
when 2ω = Ns, where Ns is the superperiodicity. This res-
onance occurs for a phase advance slightly above 90 0 per
period [17]. The beam modes may also grow when driven
by lattice resonances [18, 19], but even in this case, the re-
sponse of the beam occurs at a resonance condition, which
includes the coherent shift Δω, i.e. ω = n. A different col-
lective response occurs when the nonlinear force created by
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the space charge is modulated by the lattice and creates the
so called structure resonances [20]. In presence of lattice
gradient errors the perturbed envelope can also excite sin-
gle particle resonances (non-structure resonances), which
might be stronger than the machine resonances of the same
order [20].

Single Particle Resonance Condition in Absence
of Space Charge
At low intensity the main causes of particle loss are due to
nonlinear resonances. The ring nonlinearities cause a re-
duction of the domain of stability (dynamic aperture), and
the goal of the ring designer is to make this set as large as to
contain the beam. The analysis of the properties of the non-
linear orbits can be performed via normal forms, or with
a perturbative approach [21]. Single particle resonances
nxQx0 + nyQy0 = m should be avoided up to a certain
order not to have the dynamic aperture shrinking inside the
beam. The transverse-longitudinal coupling induces reso-
nance/instabilities, which appear as synchro-betatron res-
onances with a set of synchrotron sidebands according to
the resonance condition Qx,y = n±mQz [22]. This result
holds also when lattice resonances are excited as the chro-
maticity, creating a tune modulation, may push individual
particles across a resonance [23].

TRANSVERSE DETUNING FOR A
SINGLE CROSSING OF A RESONANCE

The role of the transverse amplitude dependent tuneshift
is beneficial for avoiding emittance growth when the bare
tune is not time dependent. In fact, if a ring is tuned on a
resonance, as a particle amplitude grows, its tune changes
in a dynamical process, which stops when the particle is
brought off the resonance. If the detuning follows the de-
pendence ΔQa(εx) = a1εx + a2ε

2
x + O(ε3x) and the stop-

band ΔQsb is located in [Qx,s1, ..., Qx,s2], then the maxi-
mum single particle emittance ε∗x to bring the particle out of
the resonance can be estimated as ΔQa(ε∗x) = Qx0−Qx,s1

if ∂Qa/∂εx < 0. This effect is very strong for high inten-
sity 2D continuous beams [24], but it can be constructed
in a ring by choosing properly a set of nonlinear elements
[25]. The limiting effect of the amplitude dependent detun-
ing is seen in the phase space by the appearance of stable
island.

Completely different is the role of the amplitude depen-
dent detuning when we consider the crossing of a reso-
nance by changing dynamically the machine tune. If the
detuning ΔQa due to amplitude growth acts against the
change of Qx0 and if the crossing is slow enough (with
respect to the instantaneous growth rate in the stop-band),
the particle will remain on one side of the resonance [26].
The particle amplitude will grow according to ΔQa(ε∗x) �
Qx,s2 − Qx0, if the bare tune continues to shift away from
the stop-band. In case the detuning acts in the same direc-
tion of the bare tune variation, if ∂Qa/∂εx is large enough,
the particle tune will jump through the resonance and the
emittance increase will be Δεx ≤ ΔQsb/|∂Qa/∂εx|; if

the detuning gradient is small, as for a particle at the tail
of the transverse distribution, then the space charge detun-
ing is not enough and the particle amplitude grows again
according to the average residence time in the stop-band.
We refer to these two types of crossing as ”from above”
and ”from below” the resonance. In Fig 2 is shown an
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Figure 2: Emittance growth as function of the crossing
speed (from above) of a third order resonance without
space charge (black curve), with ΔQx = −0.1 (red curve),
with ΔQx = −0.05 (green curve).

example of emittance increase for a crossing of a third
order resonance as function of the crossing speed. The
tune interval spanned is ±0.15 with respect the center of
the resonance. The black curve shows the response of the
2D beam at low intensity. For a crossing speed smaller
than 4 × 103 turns/crossing, the relative growth of the rms
emittance is unbounded as the time spent inside the res-
onance is enough to lose particles. The red curve shows
instead the response of a beam with space charge tuneshift
of ΔQx = −0.1. The snowplow effect brings the core
particles to larger amplitudes at faster crossing speed: now
the beam emittance diverges for crossing speed larger than
103 turns/crossing. The green curve shows an intermedi-
ate tuneshift for ΔQx = −0.05. Self consistent studies on
single passage resonance crossing are reported in [27].

PARTICLE TRAPPING INTO A
RESONANCE

Alternatively the bare tune can be set close to a resonance,
but resonance strength and amplitude dependent detuning
are controlled via lattice nonlinear elements [28]. In this
case the control on the tune amplitude dependency allows
a control on the island position. It is possible to induce
island motion, and particularly to move an island of size
Δx across a particle orbit. According to the island cross-
ing speed δxf/∂n through the particle orbit characterized
by x′

max, there are two possible scenarios: 1) The particle
remains trapped into the island and follows its fixed points;
2) The island is moving too fast and the particle receives
an orbit jump. When the island crossing satisfies an adi-
abaticity criteria: x′

max � ∂xf/∂n [28], or alternatively
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(∂xf/∂n)/(ΔxQxf) � 1 [29], particles inside the islands
remain trapped. Here Qxf is the tune of the fixed points.
The general study of the crossing of the separatrix can be
found in [30, 31]. In Fig. 3a,b we show this effect for a
tune Qx0 set at 0.03 above the third order resonance. The
space charge is progressively increased in 5000 turns from
ΔQx = 0 to ΔQx = −0.1. Note in Fig. 3b the charac-
teristic orbit of a particle trapped, which follows the third
order island. The particle reaches a maximum amplitude
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Figure 3: Rms emittance evolution as function of number
of turns to increase ΔQx; The pictures a),b) are an increase
in 5000 turns, while in c),d) a faster crossing in 1000 turns
is shown.

of x = 3.37σx starting from x = 1.3σx. In Figs. 3c,d
are shown similar results when the maximum tune-spread
is reached instead in 1000 turns. Now the crossing of the
resonance is too fast and the stable island cannot trap the
test particles. As the position of the island is controlled
by space charge ΔQx, trapped particles reach further dis-
tances in phase space for higher beam intensities. For ex-
ample repeating the slower crossing for ΔQx = −0.2 we
find that the test particle extends in x up to 5.11σx.

HIGH INTENSITY BUNCH DYNAMICS IN
PROXIMITY OF A RESONANCE

When we consider the storage of a high intensity bunch all
the elements of the previous discussion have to be taken
into account. For a fixed Qx0, the synchrotron motion
makes each particle move along the bunch experiencing a
modulated space charge at twice the synchrotron oscilla-
tion frequency. When the particle is at z = 0, the tune-
spread for x ∼ y ∼ 0 is the largest, ΔQx(0); when it
reaches its maximum longitudinal amplitude zmax it expe-
riences a reduced tune-spread ΔQx(zmax). For bunches
with small aspect ratio σx/σz , which is typical for bunches
in a ring, the transverse electric field is obtained from the

local coasting beam approximation: the transverse elec-
tric field can be computed with the local current assum-
ing a coasting beam. For σx/σz = 3 × 10−4 a relative
error better than 1% with respect to the real 3D electric
field is obtained. The dependence of the tune-spread from
the longitudinal position of a particle is well approximated
by ΔQ(z) = ΔQx exp[−0.5(z/σz)2] for a longitudinal
Gaussian distribution. If the bare tune Qx0 is placed above
a resonance, then the islands will be created and their fixed
point will be a function of z and of the maximum space
charge ΔQx. Consequently a particle in a bunch will be
periodically crossed by islands. Note that the dynamics
involved in the trapping is more complex than a repulsive
snowplow effect of a single passage. In fact, if in one half
synchrotron oscillation islands move out, then in the next
half they move in creating a periodic migration.

Difference with Synchro-betatron Resonances
In the synchro-betatron resonances the lack of a strong
amplitude dependent detuning allows to consider the
longitudinal motion as an extra source of harmonics.
The single particle tune can be written as Qx =
Qx0 + ΔQa(εx) + δQx,chr(s) with δQx,chr(s) =∑

m=1 ξm cos[m(Qz0/R)s], hence the appearance of side-
bands in the resonance condition Qx,y = n ± mQz. If
the detuning ΔQa is imposed externally by lattice nonlin-
earities modulated with wavelength L/Qe, where L is the
length of the ring, then the external tune Qe will be brought
into the resonance relation. However, in the case of a high
intensity bunch the space charge creates the single particle
tune as

Q = Qx0 +
ΔQxe−(

z0
2σz

)2 cos[(
Qz0

R )s]2

1 + [x̃/(2σx)]2
+ δQx,chr(s).

for a particle in the linear part of the bucket. Here x̃ is the
maximum transverse amplitude. The space charge detun-
ing [29] cannot be treated as a normal lattice nonlinearity:
firstly the space charge force is continuously distributed
along the ring and is modulated with the lattice optics cre-
ating structure driving terms. Secondly, by expanding in x̃
we find 1/{1 + [x̃/(2σx)]2} =

∑
n=0(−1)n[x̃/(2σx)]2n,

which indicates that all these components should be si-
multaneously accounted for particles with amplitude of
the order of σx. This prevents the contribution of a sin-
gle harmonic to the synchro-betatron sideband. Only if
|ΔQx| < Q−1

z0 sidebands can appear. Due to this prop-
erty of the space charge term, the effect of the chromaticity
in a high intensity bunch should be revised as well.

Trapping and Scattering Regime
In a resonance periodic crossing regime particles have a fi-
nite probability of being trapped or scattered by islands.
In Fig. 4 is shown an example of the dependence of a
beam evolution during a storage time of 100 synchrotron
oscillations. We take the SIS18 with Qx0 = 4.3433 and
Qy0 = 3.29, where we add a sextupole to a linear con-
stant focusing lattice to excite the resonance 3Qx0 = 13.
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The space charge gives ΔQx = −0.1, and the transverse
beam sizes are equal. In Fig. 4a we show the emittance
growth for varying synchrotron tune (expressed in turns for
one synchrotron oscillation as Nz0). We see that the emit-
tance growth increases, but above Nz0 = 500 it remains
constant to ∼ 3.5. This means that in 100 synchrotron
oscillations all particles crossing the resonance fill the re-
gion spanned by the islands. The black curve, counting the
particles beyond 3σx saturates at ∼ 15%. which indicates
that the process of diffusion is fast enough with respect to
the storage time. In Fig. 4b we have calculated the sin-
gle particle emittance for one particle of this bunch with
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Figure 4: a) Rms emittance growth (red) and % of particle
out of 3σx (black); b) Residence of test particle out of the
beam as function of Nz0.

x = 1.5σx, px = y = py = pz = 0, and z = 3σz and
show the % of stored turns where εx/εx0 > 20. This result
is shown as function of Nz0, which shows the existence of a
scattering regime where this particle is not brought to large
amplitude (for Nz0 < 180). When the synchrotron mo-
tion is sufficiently slow, in our example for Nz0 > 180, the
island will always cross the particle orbit in an adiabatic
regime and trapping may occur accelerating the diffusion
process.

Role of Chromaticity in High Intensity Beams
Including chromaticity complicates the particle dynamics.
The space charge driven tune modulation periodicity, is
half of the tune modulation introduced by the chromatic-
ity, which equals the synchrotron motion periodicity. To
understand the behaviour of beams in presence of the chro-
maticity we consider the particle tune Qx = Qx0+δQx,chr

including the chromaticity induced tune shift. If Qx gets
close to the resonance from above, the trapped particles
will be brought to large amplitude. Therefore if ΔQx,chr

is the tune-spread induced by the chromaticity, setting the
bare tune in the region Qx,res < Qx0 < Qx,res +ΔQx,chr

will always allow some particles in the bunch to hit the pipe
and be lost. A more detailed description of this beam loss
mechanism is found in [29].

THE ELEMENTS OF BEAM LOSS
PREDICTION

The key ingredients, which determine the long term beam
loss in a high intensity bunch are: 1) Distance from the

resonance Qx0 − Qx,res; 2) Space charge tune-spread
|ΔQx|; 3) Chromaticity tune-spread |ΔQx,chr|, here as-
sumed smaller then |ΔQx|; 4) Resonance strength and
Qz0. When |ΔQx| > Qx0−Qx,res > 0, a resonance cross-
ing regime takes place. The outer transverse position of the
fixed points occurs at z = 0, and depends on Qx0−Qx,res:
for Qx0 → Qx,res their position is (virtually) infinite; The
inner transverse position of the fixed points is at x = 0 in
two symmetric longitudinal positions, which can be iden-
tified by a longitudinal single particle emittance εzt . If a
particle has εz < εzt then the resonance is never crossed,
whereas if εz > εzt it crosses 4 times per synchrotron os-
cillation. The total number of particles, which periodically
cross the resonance, is estimated for a 3D Gaussian dis-
tribution as ΔN/N = α (Qx0 − Qx,res)/|ΔQx|. In this
formula valid for 0 < ΔN/N < 1, α depends on the
topology of the islands; its lower limit is obtained by a di-
rect integration, which yields α > 1. If the outer position
of islands intercepts the beam pipe or reaches the dynamic
aperture, particles with εz > εzt are lost consistently with
Qx0 −Qx,res causing a longitudinal bunch shortening (see
[32]). The presence of the chromaticity creates a beam loss
stop-band right above the resonance as large as |ΔQx,chr|.
The beam loss rate, depends on the resonance strength and
Qz0 (or Nz0) which determine the number of particles in
the adiabatic crossing regime. A code-code benchmarking
on the trapping effect can be found in [32].

As example we apply the MICROMAP library with
frozen space charge to the SIS100 for the working point
Qx0 = 18.84, Qy0 = 18.73 [7]. The space charge tuneshift
is ΔQx = −0.14, ΔQy = −0.25, for a 3D Gaussian distri-
bution with rms emittances εx = 8.75 mm-mrad, εy = 3.5
mm-mrad. The bunch has 0.75×1011 U+28 ions. In Fig. 5a
is shown a tune scan of the short term dynamic aperture
computed in 1000 turns. For the selected working point
the dynamic aperture is ∼ 3.5σ. Note the presence of two
weak high order systematic resonances 2Qx +8Qy = 186,
and 7Qx + Qy = 150, which cross the the space charge
tune-spread diamond. However, given their high order, the
size of islands created is small setting the SIS100 in a scat-
tering regime. The relatively large beam size with respect
to the dynamic aperture creates a highly nonlinear regime
where island are close to the boundary of stability and par-
ticles in the tail are lost. The beam loss developing in 105

turns is found ∼ 5% on a bunch of 2000 test macroparti-
cles. The first ∼ 2.5% beam loss quickly occurs at the
beginning for the particles in the tail as beyond the me-
chanical acceptance. As the dynamic aperture is close the
beam tail and mechanical apertures, we cannot evaluate the
impact of the scattering regime in the beam loss shown in
Fig. 5 which are affected by non-regular motion. Further
studies with larger number of macroparticles and several
beam distribution are in progress.

Experimental Verification

An experimental campaign to investigate these phenomena
took place at the CERN-PS in 2002-2003 [33]. A bunched
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Figure 5: a) Tune diagram with SIS100 WP1 working
point; b) Beam loss for a Gaussian beam.

beam with ΔQx = 0.075 was stored for 5 × 105 turns
and Qy0 = 6.12 for several values of Qx0. In this table
are reported the main results (with index s the results of
simulations)

Qx0 6.25 6.265 6.28
Δεx/εx -14% -37% 42%

(Δεx/εx)s -10% 30% 87%
ΔN/N -17% -32% -9%

(ΔN/N)s -17% -16% 0%

The beam loss regime coincides with the chromaticity tune-
spread of ΔQchr. = 0.028 for the rms momentum spread
of Δp/p = 1.5 × 10−3 and the PS natural chromaticity.
A simulation including the chromaticity yields a maximum
beam loss of 16% at Qx0 = 6.265 which is half the mea-
sured loss. The large emittance obtained in the simulations
for Qx0 = 6.265, 6.28 is consistent with a reduced beam
loss. In a previous simulation ignoring the chromaticity we
have found only 8% loss [32]. The still remaining discrep-
ancy will be subject of future studies, which should include
an estimate of the effect of the fully self-consistent space
charge (2D 1

2 see [34]).

Outlook
Experimental studies on trapping effects in high intensity
beams are in progress at GSI with an official dedicated
beam time (S317 experiment). The evaluation of data from
these experiments will be part of a future report. The im-
pact of the high intensity nonlinear beam dynamics on the
SIS100 halo collimation system will be evaluated in the
near future. The principles of the trapping mechanisms
driven by high intensity beams are also found in incoherent
electron clouds [35]. A present benchmarking effort in this
area of studies is in progress [36].
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