
ACCELVIEW: A GRAPHICAL MEANS FOR DRIVING INTEGRATED
NUMERICAL EXPERIMENTS*

N. Barov#, J. Grubert, J.S. Kim, FAR-TECH, Inc., San Diego, CA
S. Reiche, UCLA Dept. of Physics and Astronomy, Los Angeles, CA

Abstract
Many  accelerator  projects  make  use  of  integrated

numerical  experiments, where particle  distributions are
transferred  between  several  accelerator  codes.  This  is
usually  accomplished  by  writing  custom  scripts  that
launch the underlying programs and perform data format
translation. We present a way to simplify this process by
using  a  graphical  user interface  that  allows  one  to
describe the data flow in the style of the LabVIEW and
Simulink  environments.  A  module  to  support  a  new
accelerator code involves writing data translators to/from
a common format (SDDS), and a function to generate an
input  file  based  on  a  standard  way of  specifying  an
accelerator lattice (such as Accelerator Markup Language,
or AML).

INTRODUCTION
Many  accelerator  physics  problems  need  the  use  of

more than one  simulation  code  or  package  to  treat  the
entire beamline and experiment. This process goes by the
name  of  integrated  numerical  modelling  or  start-to-end
simulation. A perfect example is an FEL facility, where a
code  such  as  PARMELA  is  used  to  model  the
photoinjector, ELEGANT is used to model the linac, and
the FEL interaction is modelled with GENESIS. 

Start-to-end  simulations  can  be  difficult  to  perform
because  of:  1)  a  lack  of  familiarity  with  all  the  codes
involved,  2)  the  need  to  write  custom  scripts  for
translating  between  different  particle  distribution  file
formats, 3) the need to run each code in the chain, either
by hand or by writing a custom script, and 4) the lack of
graphical  methods  to  facilitate  the  whole  process.
Although such graphical user interfaces (GUI's) do exist
in  other  fields  of  science,  there  is  no  generic  GUI  for
performing integrated numerical modelling that can easily
be adapted to accelerator problems.

Our project relies on a common method for specifying
an  accelerator  lattice  that  can  be  used  with  many
accelerator  physics  codes.  For  this  purpose,  we  have
chosen AML (Accelerator Markup Language) [1]. In this
scheme, the accelerator lattice is  described using XML,
which yields a number of advantages. For instance, the
lattice description data can be validated against an XML
schema, and can be processed using standard techniques
to perform functions such as tree traversal,  search,  and
database  integration.  An  additional  advantage  is  that
future changes to accelerator codes should be reflected in
AML, and thus easily integrated into our project.

GRAPHICAL DESCRIPTION OF A
BEAMLINE

Performing start-to-end simulations with a wide range
of supported codes can benefit from having a common set
of  tools  for  describing  an  accelerator  lattice,  and  the
ability to translate that description to the native input files
of each accelerator code.  

We  have  developed  two  graphical  methods  for  this
purpose, and for interacting with an accelerator project in
general. One is based on LabVIEW, and the other is an
in-house  developed  diagramming  GUI  that  seeks  to
provide  the  flavor  of  LabVIEW  development,  and  is
called AccelView.

Figure  1:  Defining  a  FODO  lattice  with  a  set  of
LabVIEW functions.

Figure  1 is an example of defining a beamline lattice
using our LabVIEW toolkit. The line that originates at the
“Start  Lattice”  function  and  goes  through  every
quadrupole  represents  the  beamline.  Every  beamline
element  (quad,  bend,  accelerator  cavity,  etc.)  has
parameter inputs for its most often used inputs, as well as
an attributes input to specify less-often used parameters
such as misalignments and errors, floor coordinates, and
tilt.  Attributes  are  created  in  a  series  of  functions  and
chained  together,  similar  to  a  list  of  elements  in  a
beamline.  Elements  and  attribute  functions  can  be
selected  from  a  drop-down  icon  list,  and  further
documentation is available in a help window. 

After a beamline description is graphically created, the
beamline data is translated to AML (Accelerator Markup
Language). The data is then translated to the native input
file  formats  of  a  set  of  accelerator  codes.  Additional
accelerator codes can be supported by writing translator
modules from AML to the native input file formats.

The LabVIEW environment allows the user to  create
arbitrarily  complex  programming  projects,  and  this
capability  can  effectively  be  used  as  the  scripting
interface to our toolkit. The AccelView environment has
the same capability. In this way, the software can appeal
to both non-programmers, because it is easy to learn, and
to programmers, who can appreciate the power inherent in
the software's scriptability.____________________________________________

*Work supported by US Dept. of Energy.
#barov@far-tech.com

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAS087

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3687



SCRIPTING USING A GUI
In  both  the  LabVIEW and AccelView environments,

scripting  ability  is  built-in.  Typical  programming
constructs such as functions, loops, and conditionals are
available in both environments.   Inputs and outputs are
linked together by wires,  which control the flow of the
script.  Any given loop, conditional, or function will not
execute  until  all  its  input  wires  are  marked  as  "valid",
meaning that  the previous object connected to the wire
has  already  been  executed.  Additionally,  a  sequence
object is provided, which is used to control the flow of the
program when wires cannot.

Figure 2: Using a loop to create 30 RF cavities.

This  scripting  capability  makes  it  possible  to  easily
accomplish complicated tasks. To get an idea of how this
works,  consider  the  lattice  given  in  Figure  2.   This
beamline description creates a lattice consisting of 30 RF
cavities,  end-to-end.   (The final  input  to  the RF cavity
function is the distance, s, given in meters.)  In a similar
manner, a user could create loops which run a simulation
for  many  iterations,  varying  some  parameter  until  a
termination  criterion  is  met.   This  powerful  scripting
ability  provides  an  intuitive  substitute  for  hand-written
scripts. 

RUNNING A SINGLE ACCELERATOR
SIMULATION

Although our  ultimate  aim is  to  perform start-to-end
simulations, it is first instructive to explain how to set up
and interpret a single simulation.

Once the AML data is created, it can be translated to
the format of a specific accelerator code. However, AML
only describes the accelerator lattice, and not information
such as the choice of algorithm used in the simulation.
Every  code  will  also  tend  to  have  some  beamline
elements  and  options  that  do  not  fit  within  the  AML
scheme. These extra parameters are given to the function
used to execute a single simulation in Figure 3. (Note that
the additional input values pictured here are only required
if no input particle distribution is given.)   The user then
has the option of visualizing the results of that simulation
with  standard  plotting  functions,  such  as  those  in  the
SDDS toolkit.

  

Figure 3: Additional inputs to Elegant

PERFORMING START-TO-END
SIMULATIONS

A  set  of  functions  that  define  a  start-to-end  set  of
simulations can be chained together in a similar way as
the  elements  of  a  single  beamline.  The  output  of  each
code  is  translated  to  a  common  format  (SDDS),  and
translated  once  more  to  format  expected  by  the  next
simulation in the chain.

A simple start-to-end simulation is pictured in Figure 4.
The additional attributes for the "Run Parmela" and "Run
Elegant" functions have been left out for clarity.  In this
figure, an AML lattice is loaded and then split into two
subsets: one from 0 to 14.9 meters and one from 14.9 to
40  meters.  The  first  subset  provides  the  lattice  for
Parmela  and the second becomes the input beamline for
Elegant; the results of both runs are then plotted. 

Figure 4:  A simple start-to-end simulation

A start-to-end set of simulations must define a set of
files and directories for running each simulation. In our
scheme,  a  start-to-end  project  has  a  directory  structure
shown below:

project/
project_input_file
logfile
common_files/
elegant_1/
elegant_2/
parmela_1/
parmela_2/ 

The file project_input_file serves as the input file to the
AccelView  environment.  A  new  directory  is  created
before  running  an  instance  of  a  particular  accelerator
code,  for  instance  parmela_1/,  parmela_2/,  etc.  These
directories  contain  the  phase  space,  the  AML  lattice
description,  and  other  input  files  needed  for  the
simulation.  The  common_files  directory  contains  input
files  that  are imported from elsewhere into the project,
such as RF cavity field maps. The master logfile contains
the  details  of  running  each  simulation,  including  any
errors encountered.

THPAS087 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3688

D05 Code Developments and Simulation Techniques

1-4244-0917-9/07/$25.00 c©2007 IEEE



Start-to-end simulations can be active for  many days
before the final results are available. During that time, the
user  can  keep  track  of  progress  by  using  a  solutions
browser.  This  is  a  separate  program  that  displays  one
entry per simulation, including the status, and has a set of
buttons for displaying logfiles, intermediate phase-space
files, and other data.

CLIENT-SERVER FUNCTIONS
Some  accelerator  codes  have  specific  installation

requirements in terms of the operating system version, as
well as other software dependencies (compilers, utilities,
etc.).  This  raises  the  possibility  of  having  conflicting
requirements between two or more of the codes in a start-
to-end simulation. Sometimes, the most readily available
way to perform start-to-end simulations in such a case is
to manually transfer files from one system to another.  For
instance,  a  user  might  need  to  run  the  first  part  of  a
simulation using PARMELA on the local machine,  and
then the second part of the simulation using ELEGANT
on a remote server.  With our environment, this is taken
care of automatically.

We have developed a software component that allows a
code  to  seamlessly  run  remotely  on  a  server  machine.
This is done by mirroring the run directories between the
two machines before and after executing the simulation
on the server. The method addresses security concerns by
sending  the  user/password  pair  using  RSA  encryption.
Our  implementation  of  this  is  a  stand-alone  Python
program  that  does  not  rely  on  some  other  underlying
means of exchanging data such as SSH, which might not
be  convenient  to  install  on  all  environments.  This  was
done to facilitate installation on a diverse set of platforms.

This client-server approach is also useful for submitting
jobs on a parallel computing cluster. 

FUTURE DEVELOPMENT
At present, the project has support for ELEGANT and

the  UCLA version  of  PARMELA, but  is  in  a  pre-beta
release stage. In the future we will improve the quality of
the code,  support  more codes,  and include several  new
features, as described below.

Several codes that are useful for simulating accelerator
hardware  need input  of  a  2-D geometry.  This  includes
cavity eigenvalue codes, wakefield solvers, and magneto-

static codes. Often these codes do not have a graphical
front-end  for  specifying  the  problem  geometry.  In  the
spirit  of  being  able  to  specify  everything  within  an
accelerator simulation through a graphical front-end, we
plan  to  build  a  tool  that  can  serve  as  an  interface  to
several such codes. This approach is more efficient than
having the ability  to import  2-D contours from a CAD
program,  since  an  accelerator-specific  2-D  geometry
editor  can  be  used  to  assign  region  properties  and
boundary conditions.

CONCLUSION
We have presented a way to link accelerator  physics

codes  through  a  simple  graphical  user  interface.   This
important  tool  can  greatly  simplify  the  construction  of
start-to-end simulations,  while still  providing the power
inherent in its scripting ability. 

The development goals have been to support multiple
platforms and minimize software dependencies on those
platforms in order to facilitate installation requirements.  

In  the  future,  we  plan  to  extend  the  capabilities  of
AccelView to include the ability of specifying an entire
accelerator project in a graphical interface. This includes
specifying the 2-D geometry for programs like cavity RF
and wakefield codes.

ACKNOWLEDGEMENTS
We  wish  to  thank  Dr.  David  Sagan  of  Cornell

University  for  many  helpful  discussions  regarding  the
AML project. 

This work was supported by the Department of Energy,
through SBIR grant number DE-FG02-06ER84465.

REFERENCES
[1]  Information  on  the  AML  project  can  be  found  at:

http://www.lns.cornell.edu/~dcs/aml/
[2] ELEGANT and the SDDS toolkit can be downloaded

from:
http://www.aps.anl.gov/asd/oag/SDDSInfo.shtml

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAS087

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3689


